Rodríguez-Pascua, M.A. y De Vicente, G. 2001. Análisis de la fracturación en materiales recientes (Mioceno superior-Cuaternario) en el Prebético Externo de Albacete. *Boletín Geológico y Minero*, 112 (4): 65-77 ISSN: 0366-0176

Análisis de la fracturación en materiales recientes (Mioceno superior-Cuaternario) en el Prebético Externo de Albacete

M.A. Rodríguez-Pascua⁽¹⁾ y G. De Vicente⁽²⁾

 (1) Sección de Ing. Química Ambiental y CC. de la Tierra. Dpto. Química Inorgánica y Materiales.
 Facultad de Ciencias Experimentales y de la Salud. Univ. San Pablo-CEU. 28668-Boadilla del Monte (Madrid) E-mail: marodpas@ceu.es

(2) Dpto. Geodinámica, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 Madrid. E-mail: albosque@eucmax.sim.ucm.es

RESUMEN

La zona estudiada se sitúa en el Prebético de Albacete y corresponde a la zona de transferencia norte del Arco Estructural Cazorla-Alcaraz-Hellín. El estudio de la fracturación se ha centrado fundamentalmente en los materiales de las cuencas lacustres del Mioceno superior, que se desarrollan dentro de esta banda de transferencia, y en los materiales cuaternarios en los que se han observado deformaciones. Las medidas tomadas en el campo constan de un total de 610 datos de pares falla-estría repartidos en 23 estaciones. El campo de esfuerzos reciente (Mioceno superior-Cuaternario), se ha calculado mediante diferentes técnicas de análisis poblacional de fallas (Modelo de Deslizamiento, Diedros Rectos, Método de Inversión de Esfuerzos y Método de Delvaux) para poder contrastar la solución. Las soluciones obtenidas presentan dos direcciones medias de máximo esfuerzo en la horizontal (σ_{HMAX}), NO-SE y NE-SO. Estas dos direcciones están definidas esencialmente por fallas normales, debido a que los datos se han medido en su mayoría dentro de cuencas extensivas. La primera es la que estructura la zona con el emplazamiento del Arco Estructural Cazorla-Alcaraz-Hellín y la segunda es la responsable de la génesis de las cuencas lacustres (limitadas por fallas normales E-O). Estos dos campos de esfuerzo son simultáneos y generados por una flexura cortical E-O, para toda la Cordillera Bética.

Palabras clave: análisis poblacional de fallas, fallas, Prebético, tectónica reciente, tensores de esfuerzo

Faulting analysis of recent rocks (late Miocene-Quaternary) in the External Prebetic zone of the Albacete (Spain)

ABSTRACT

The studied area is located in the Albacete Prebetic Zone and corresponds to the north transfer zone of the Cazorla-Alcaraz-Hellín Structural Arch. Fracturing study has been carry out fundamentally in deformed rocks from the Late Miocene lacustrine basins and Quaternary inside this transfer zone. A total number of 610 couples fault-slickenside lineations has been measured in 23 sites. Recent stress field (Late Miocene-Quaternary) has been calculated by means of several fault population analysis methods (Slip Model, Right Dihedral, Stress Inversion Method and Delvaux's Method), to check the solution. The inferred solutions show two orientations of maximum horizontal stress (σ_{HMAX}), NW-SE and NE-SW. These orientations are defined mainly by normal faults, because most of the data has been taken inside extensive basins. The first one (NW-SE) is related to the build-up of the Cazorla-Alcaraz-Hellín Structural Arch and the second one is linked to the genesis of the lacustrine basins (limited by E-W normal faults). These stress fields are simultaneous and generated by Betic Chain E-W flexural bending.

Key words: fault, fault population analysis, Prebetic Zone, recent tectonics, stress tensors

Introducción

Uno de los parámetros que controla la dinámica de un área es la orientación del campo de esfuerzos con respecto a las principales estructuras. Para poder establecer la orientación de estos campos de esfuerzo se pueden utilizar técnicas de análisis poblacional de fallas aplicadas al estudio de la microfracturación. Con el análisis de la fracturación, en este caso desde el Mioceno superior hasta el Cuaternario, se obtiene

el campo de esfuerzos reciente, con el que se podrá inferir la historia tectónica reciente del Prebético de Albacete.

Situación geográfica y geológica

El área de estudio en el que se han medido los datos de microfracturación se sitúa en el sector suroriental de la Comunidad Autónoma de Castilla-La Mancha, en la zona sur de la provincia de Albacete. Desde el punto de vista geológico, en esta zona aparecen un conjunto de cuencas lacustres neógenas localizadas en la banda de transferencia N del arco estructural Cazorla-Alcaraz-Hellín, donde se han obtenido la mayoría de los datos (Fig. 1). Las principales estructuras que condicionan la dinámica del área durante la orogenia alpina son los desgarres destrorsos que la cruzan en dirección NO-SE. Estos desgarres corresponden, de sur a norte, a las fallas de Socovos-Calasparra, Liétor y Pozohondo (Fig. 2). La Falla de Socovos-Calasparra separa los dominios del

Prebético Interno (al Sur) del Prebético Externo (al Norte), con diferentes características de las facies mesozoicas y preneógenas. Las fallas de Liétor y Socovos-Calasparra diferencian la zona de mayor relieve en el área, donde se generan las principales cuencas lacustres (Mioceno superior) a favor de fallas normales E-O. La falla de Pozohondo constituye el límite N-E de la zona de transferencia del arco estructural Cazorla-Alcaraz-Hellín, disminuyendo el relieve en esta misma dirección.

Contexto tectónico

La evolución tectónica del área de estudio está esencialmente condicionada por el emplazamiento del arco estructural Cazorla-Alcaraz-Hellín. Concretamente, el área de trabajo se sitúa en la banda de transferencia norte del arco, en el sector en el que las estructuras béticas experimentan un giro en su orientación hacia el NO-SE, por la existencia de un sistema de fallas destrorsas que superan el centenar de kiló-

Fig. 1. Situación geográfica y geológica del área de estudio; a) Falla de Socovos-Calasparra, b) Falla de Liétor, c) Falla de Pozohondo; d) Falla de Tíscar

Fig. 1. Geographical and geological location of the study area; a) Socovos-Calasparra Fault, b Liétor Fault, c) Pozohondo Fault; d) Tíscar Fault

metros (siendo la más importante la Falla de Socovos-Calasparra) (Fig. 2). Mientras que la banda Sur está constituida por la Falla de Tíscar (Guézou *et al.*, 1991). Este arco tiene principalmente directriz bética (NE-SO). La zona oriental del arco se flexiona según una dirección E-O para girar posteriormente hacia el SE. Más hacia el Este, las estructuras del Prebético vuelven a recuperar su dirección bética.

El movimiento de estos desgarres destrorsos produce desplazamientos en las trayectorias de las fallas inversas durante la orogenia alpina (Martín Velázquez *et al.*, 1998). También se pueden observar pliegues forzados (Park, 1988), paralelos a la falla de desgarre que los ha generado, como es el caso de la falla de Liétor.

Además de fallas en dirección también se pueden observar fallas inversas (con trazas que no suelen superar la decena de kilómetros) y diferentes orientaciones en las direcciones de plegamiento. Estas fallas inversas se reactivan como normales en el Mioceno superior, jugando un papel muy importante en la génesis de las cuencas lacustres, mientras que los desgarres presentan escasa actividad. La complejidad y el desarrollo de los pliegues y cabalgamientos se acentúan a medida que nos acercamos a la zona frontal del arco (Linares Girela y Rodríguez Estrella, 1973). Los materiales más modernos que están incorporados en las escamas de los cabalgamientos tienen una edad Mioceno superior (Tortoniense inferior), es decir, que no afectan a los materiales estudiados.

Coincidiendo con las últimas compresiones alpinas post-Serravalienses, se produce una sedimentación lacustre muy importante, que se extiende a lo largo de todo el Mioceno superior (Tortoniense inferior-medio a Plioceno inferior-medio -Zancliense-(Elízaga, 1994), en cuencas delimitadas por fallas normales (Elízaga y Calvo, 1988). A diferencia del resto de las estructuras, mantienen constantes sus direcciones, una principal aproximadamente E-O y otra minoritaria perpendicular. Por ello, la geometría de las cuencas es alargada, con su eje mayor orientado E-O. La actividad de estas fallas coincide con la etapa distensiva Tortoniense que numerosos autores han definido a lo largo de todas las cordilleras Béticas (Bousquet et al., 1976; Calvo, 1978; Hermes, 1985; Elízaga, 1994; Sanz de Galdeano y Vera, 1991; De Ruig, 1992; Galindo-Zaldívar et al., 1993), aunque tienen un desarrollo generalizado en la zona estudiada, donde están mejor representadas es en el dominio delimitado por las fallas de Socovos-Calasparra y Liétor. Como ya se ha comentado anteriormente, estas fallas normales son consecuencia de la reactivación de las fallas inversas alpinas como fallas normales durante este proceso extensivo (Martín

Fig. 2. Esquema estructural y localización de las principales cuencas lacustres (Mioceno superior): 1. Híjar, 2. Elche de la Sierra-Cobatillas, 3. Gallego, 4. El Cenajo, 5. Camarillas-Las Minas, 6. Cuencas de Isso y 7. Cuencas de Hellín. Coordenadas UTM en kilómetros, huso 30. Situación de las estaciones de medida del análisis poblacional de fallas

Fig. 2. Tectonic framework of the study area. Location of the lacustrine basins developed throughout the Late Miocene: 1. Híjar; 2. Elche de la Sierra; 3. Gallego; 4. El Cenajo; 5. Las Minas; 6. Isso Basins; 7. Hellín Basins. UTM coordinates (zone 30; km). Location of the fault population analysis stations

Velázquez *et al.*, 1998). Esta etapa extensiva está acompañada de procesos halocinéticos de los materiales de edad Triásico superior, actividad volcánica de carácter ultrapotásico y eventos sísmicos deducidos a partir de estructuras de origen paleosísmico (Rodríguez Pascua, 2001).

Análisis de la fracturación

Se han medido un total de 610 datos de pares fallaestría en materiales del Mioceno superior-Cuaternario repartidas en 23 estaciones de medida (Figs. 2 y 3), tratadas con diferentes métodos de análisis poblacional de fallas para poder contrastar las

Fig. 3. Algunos ejemplos de afloramientos de estaciones de medida de fallas: A) fallas normales en niveles diatomíticos y calcáreos de la Cuenca de Elche de la Sierra-Cobatilllas (Mioceno superior). Cantera de Celite-Hispánica; B) pliegue de propagación de falla en calizas lacustres de la Cuenca de El Cenajo (Mioceno superior); C) escarpe de falla normal en calizas lacustres cuaternarias, en la localidad de Tobarra; D) falla normal en materiales cuaternarios de la Rambla del Mojón, Cuenca de Híjar

Fig. 3. Outcrop photographs of fault stations: A) diatomaceous and marlstone rocks affected by normal faults in the Elche de la Sierra-Cobatilllas Basin (Late Miocene). Celite-Hispánica quarry; B) lacustrine marlstone affected by fault propagation fold in the El Cenajo Basin (Late Miocene); C) lacustrine marlstone (Quaternary age) affected by a normal fault scarp, Tobarra; D) Quaternary conglomerates affected by a normal fault in the Rambla del Mojón, Hijar Basin

soluciones. Todos los afloramientos correspondientes al Mioceno superior se han medido en las cuencas lacustres, mientras que los datos pertenecientes al Cuaternario se han obtenido de los sedimentos fluviales de los principales ríos de la zona. Mediante el análisis mecánico de estos datos se obtiene el campo de esfuerzos para este período de tiempo. Los métodos de análisis poblacional de fallas utilizados son los siguientes:

- Método de los Diedros Rectos (Pegoraro, 1972; Angelier y Mechler, 1977) (geométrico-cinemático).
- Modelo de Deslizamiento (De Vicente, 1988; a partir del modelo de Reches y Dietrich, 1983).
- Método de Inversión de Esfuerzos (Reches, 1978,

1992; Reches y Dietrich, 1983) (basado en la ecuación de Bott).

 Método de Delvaux (Delvaux *et al.*, 1992; Delvaux, 1993; basado en la ecuación de Bott).

El método base sobre el que se ha trabajado es el Modelo de Deslizamiento (De Vicente, 1988), por su clara representación gráfica y por tratarse de un método directo. Esto permite separar subpoblaciones de fallas compatibles con diferentes direcciones de máximo acotamiento en la horizontal (Dey). Se pueden deducir también los sentidos de movimiento en las fallas en las que no se hayan podido observar en el campo (De Vicente, 1988; Capote *et al.*, 1990). El Método de los Diedros Rectos se utiliza para subpoblaciones separadas con el Modelo de Deslizamiento.

Los resultados de estos dos métodos son chequeados por los dos métodos restantes, basados en la ecuación de Bott (1959), Método de Inversión de Esfuerzos y Método de Delvaux. Por último, se contrastan las soluciones de los cuatro métodos, para dar el tensor de esfuerzo/deformación definitivo, el que debe adaptarse al menos a tres de estos.

El Método de los Diedros Rectos (Pegoraro, 1972; Angelier y Mechler, 1977), se ha utilizado en todas las estaciones y, especialmente, para determinar la orientación de paleoesfuerzos en subpoblaciones. Estas subpoblaciones se obtienen al dividir, por otros métodos, poblaciones de estaciones polifásicas. Según De Vicente y Simón Gómez (1991), el Modelo de Diedros Rectos, como está definido, no permite solucionar el problema de eliminar fallas pertenecientes a diferentes etapas de deformación. Por tanto, se ha utilizado en estaciones monofásicas, y en polifásicas separadas en subpoblaciones monofásicas.

Con el Método de Inversión de Esfuerzos (Reches, 1978, 1992; Reches y Dietrich, 1983) también es posible separar subpoblaciones que se ajusten a diferentes tensores de esfuerzo, aunque suele ser menos restrictivo y agrupa subpoblaciones mayores que el Modelo de Deslizamiento, por lo que se utilizará para diferenciar diferentes tensores de esfuerzos compatibles con una misma fase de deformación (deducida por el Modelo de Deslizamiento). Es decir, se supone que con una misma "fase" de deformación se pueden generar diferentes tipos de fallas (inversas, normales y desgarres), compatibles con una misma dirección de máxima compresión en la horizontal, pero asociadas a tensores de esfuerzo diferentes. Así, una falla inversa tendrá como esfuerzo de máxima compresión en la horizontal σ_1 (con σ_2 en la horizontal y σ_3 vertical), mientras que una falla normal será σ_2 (con σ_1 vertical y σ_3 horizontal) paralelo al σ_1 de la falla inversa compatible. Lo mismo ocurre para desgarres, en los que σ_1 es horizontal pero σ_2 vertical. Para cada uno de estos tipos de fallas obtendremos un tensor de esfuerzos diferente, que no representan necesariamente "fases" tectónicas diferentes (Sassi y Faure, 1996). Este método también calcula los parámetros mecánicos del macizo rocoso fracturado.

El Método de Delvaux (Delvaux *et al.*, 1992) utiliza un tensor previo, obtenido con el diagrama de Diedros Rectos, del que calcula la forma del tensor de esfuerzos previo y un error angular σ (desviación entre la estría teórica y la real). Optimiza la solución para el tensor calculado con el diagrama de Diedros Rectos, rotando dos de los ejes de esfuerzo alrededor del tercero, que permanece fijo (se pueden fijar cualquiera de los tres ejes, σ_1 , σ_2 ó σ_3 , en función de lo que más interese, dependiendo del tipo de falla). La metodología aplicada es similar a la desarrollada para el Método de Inversión de Esfuerzos. La principal ventaja de este método es que se tiene un mayor control sobre los resultados finales, por poder tener en cuenta otros datos microestructurales (estilolitos y grietas de tracción) y por poder optimizar las soluciones en función de los diferentes parámetros que definen el tensor de esfuerzos (orientación, forma, magnitud relativa del tensor y de sus componentes σ_1 , σ_2 y σ_3).

Con este tipo de métodos no es posible calcular la magnitud real del tensor de esfuerzos; tan sólo sería posible calcular la magnitud real del principal esfuerzo en la vertical si se conoce la presión litostática durante la deformación (Angelier, 1989).

Una vez realizado el análisis poblacional de fallas y calculado el tensor de esfuerzos para cada estación de medida, se pasará a la elaboración de mapas de trayectorias de esfuerzos para cada campo deducido. Para el cálculo de las trayectorias de esfuerzos se ha utilizado el método de interpolación de tensores locales desarrollado por Lee y Angelier (1994) en su programa TRAJECT. Así, se ha podido determinar la evolución del campo de esfuerzos regional que ha estructurado la zona durante el Mioceno superior-Cuaternario. De esta manera, se obtienen las características locales (estación a estación) y regionales del campo de esfuerzos al realizar la interpolación de los tensores locales.

Tensores y campos de esfuerzo durante el Mioceno superior-Cuaternario

Se han tratado individualmente las 23 estaciones de medida (Fig. 2) con los diferentes métodos de análisis poblacional de fallas ya indicados. En algunas de las estaciones se han diferenciado varias subpoblaciones de fallas, que por su distinto carácter se han tratado por separado, obteniéndose varios tensores en una misma estación. También se da el caso de que algunas estaciones en materiales cuaternarios sólo se han podido tratar con el Modelo de Deslizamiento por su escasez de datos (ver tabla 1). No obstante, se han tenido en cuenta en el análisis conjunto por su interés, al ser los datos más recientes que se han podido obtener. Los resultados tensoriales calculados para cada estación con cada método aparecen en la tabla 1. Así mismo, en la figura 4 quedan representadas las soluciones gráficas obtenidas con el método de inversión de esfuerzos.

Para obtener el tensor de esfuerzos regional en la zona se han sumado los 610 datos de pares fallaestría en una única población. Con el modelo de deslizamiento se observa a simple vista que existe un

EST/	ACION	IES		DE	SLIZAI	MIENT	o		MÉTODO	DE IN	VERSIÓ	N DE ES	SFUER	SOS				MÉTODO D	E DELVAL	хг	
NOMBRE	υ	×	~	Edad(mat.)	DEYM	DS	۲	σ1 σ2	σ 3	œ	SM	(a1) (a	52) (G	ц (8	2	σ1	σ2	σ3	۳	ъ	c
1 ABEJUEL1 5	5	84900	4246250	Q tobáceo	137	32	Ð														
2 ALFON1M 1-	4 62	23300	4231300	Diap. Keu.	91	10	14	87/246 00/1:	31 02/041	0.09	10.33	100	12 4		2	53/342	14/091	34/190	0.67	8.37	7
3 CALASM1M 1	4 6	12300	4233750	Mioc. lac.	161	29	14	86/341 03/1	71 00/081	0.05	12.99	100	15 1	1.	1	60/043	17/164	24/262	0.64	2.80	Ð
																61/155	13/273	26/009	0.38	7.25	4
	č	00001	032000		14	0	c		FFC/FC		90.0	001	2	Ċ	г	11/178	3 73/306	13/085 05/022	0.12	1.92	പ
5 CAMAR2 3	o ic	17650	4244850	Minc. Jac.	170	2 00	م 10	03/342 03/03/03	72 84/207	0.47	7.45	150 1	23 10		~ ~	721/20	03/084	86/298	0.44	8.48	റെ
					88	6	21	83/315 04/0	39 04/180	0.34	10.93	101	33 - S	.0	, 0	80/245	10/084	03/354	0.44	11.65	21
6 CAMAR3 10	.9 9C	16100	4248150	Mioc. lac.	147	œ	30	72/203 14/0	55 08/323	0.20	14.54	104 6	33 5	0.0		01/158	04/068	86/265	0.33	11.44	27
					40	10	70									66/221	24/047	02/316	0.31	8.55	47
7 CANCAR1 3.	33	23250	4252500	R. volcán.	50	24	33	85/097 03/2	34 00/194	0.14	36.19	100	51 4:	.0	2	~					
8 CENAJO1 3.	33 0(08700	4248625	Mioc. lac.	51	15	33	05/053 00/1	43 84/236	0.60	11.22	261 1	97 9	.0	τ ά	3 20/052	03/321	70/223	0.75	11.43	32
9 CENAJO2M 4	9 9	05250	4248900	Mioc. lac.	67	20	46	84/264 05/0	32 02/153	0.16	34.65	100	35 5	.0	2	I 52/22E	36/069	12/331	0.50	11.25	20
								12/045 42/3	04 44/147	0.13	22.64	210 1	03 8.	0.	1	_					
10 ELCHE2M 2	6	92700	4257750	Mioc. lac.	165	12	9									04/163	8 03/253	85/017	0.00	17.33	9
					72	10	23	83/094 05/2	45 03/336	0.31	22.83	101	4	.0	1	3 56/060	34/233	03/326	0.70	10.52	15
11 ELCHE3M 1	4 5(92250	4257600	Mioc. lac.	149	6	80	12/335 13/0	39 71/202	0.20	13.84	179 1	12 9	0	<u>ی</u>	06/157	18/065	71/265	0.50	12.98	ß
					53	10	9									19/214	13/308	67/071	0.75	9.15	4
12 ELCHE4M 1	7 58	88000	4259000	Mioc. lac.	93	16	17	83/256 06/0	34 01/154	0.07	9.17	101	47	0.	1	3 79/212	08/082	08/351	0.16	8.50	17
13 GALLEG1M 2.	8	87000	4252700	Mioc. lac.	56	9	13	02/057 85/2	92 03/147	0.03	6.35	94	25 2:	0.0	2 8	04/234	1 21/143	69/334	0.10	7.13	11
					128	7	15	49/295 40/1	26 05/031	0.39	16.72	59	28 1	0.0	.1	55/333	34/137	08/232	0.83	7.50	11
14 GALLEGO2 1	7 5	84800	4252800	Mioc. lac.	101	15	17	73/187 4/29	3 15/024	0.05	15.53	54		,		100/02 t	00/273	20/182	0.46	7.48	13
15 GALLEG3M 2	5	87500	4252200	Mioc. lac.	140	13	25	84/315 05/1	42 00/052	0.40	30.67	100	30	0	1	3 25/322	65/149	03/053	0.16	4.17	10
16 HELLIN1M 1	.9 0	16500	4262500	Q. Brechas	140	12	10	05/131 81/2	62 06/040	0.43	19.92	109	70 4	1 0.	1	83/284	07/113	01/023	0.60	2.80	£
17 HIJAR1M 1	7 5(86225	4268250	Mioc. lac.	86	11	17	78/225 09/0	82 06/351	0.25	29.62	103	37 1	0.0	-1	76/220	11/077	08/345	0.33	11.82	10
18 HIJARQ1 1	9	86250	4268500	Q.Conglom.	126	27	19	80/347 09/1	43 04/234	0.09	22.79	102	21 1:	0.0	.1	2 85/135	04/342	02/252	0.00	13.47	13
19 MINAT1M 1	5 6.	20700	4260750 F	Plio-Q.Arenis.	43	13	15									04/045	86/250	02/135	06.0	4.25	D
20 MOHARO1 1	ų,	13750	4245000	O Travert	165	c	4									90/134	00/263	01/173	0.02	18.38	9
))		0000		5 1	9 9	12	76/031 06/2	73 11/182	0.05	23.06	105	14 5	-	1	73/272	09/032	14/124	0.65	16.07	10
21 MOLIN1M 4.	3	72500	4258800	Mioc. lac.	28	6	24	01/207 86/3	34 02/117	0.52	15.43	144 1	00	0.0	1 2	14/197	76/021	01/287	0.48	9.63	15
					89	10	19	86/093 02/2	47 01/337	0.15	14.23	100	28 1	4	5	83/301	06/081	04/172	0.22	16.33	15
22 TALAVE1M 7	1 6	05800	4259600	Mioc. lac.	37	10	20	75/183 13/3	54 02/084	0.11	18.55	105	22	0.9	1	l 65/214	16/085	18/350	0.01	8.55	00
					144	10	51	71/329 13/1	94 12/101	0.10	23.73	106 4	45 3	.0	t t	81/330	08/174	03/083	0.11	11.08	27
								10/231 26/1	35 61/340	0.01	6.56	302	95 93	0.0	0	11/222	11/314	75/086	0.06	10.90	6
23 TALAVEQ1 4	60	02500	4261800	Q.Conglom.	152	21	4														
Tabla 1 Beenlta	000	chen eb	, actación ,	de medide		0	liferen	tae mátodoe	de Anál					100	adoerili	l se coorden	Too sepe	MTH	n metr	oe dent	
huso 30. Edad d	le los	s mater	iales (mat.)	ue meuru): Q = Cuat pippto pp	ternal	rio; D	iap.Ke	ee facies f up. = facies f - docvinció	ceuper;	Mioc.	lac. =	Mioce	s ou	uperio uperio	r lacustr د تو م	e; R. volc. = r	oca volc	ánica; Plic	oc = Plic	oceno. E	EYM M
zo; R = factor de	e fori	ma del	tensor de	esfuerzos	(B = 2	ן ב <u>מ</u> י - ((מי -	ດ, / (c	ວ - ຜວອາສດເວ 5, - ດ₀)); SM =	desviad	ción r	nedia	de los	e les	brinc	ipales; (3 – σποπασια σ.) (σ.) (σ.) = 1	magnitu	des relati	ivas de	los eies	prin-
cipales de esfue	; ozrę	щ = соб	ficiente de	<pre> fricción; </pre>	α = d	esvié	ación a	le la estría te	órica co	n res	pecto	a la re	sal,			- -)				
Table 1. Results	s froi	n all Fé	ult Popula	tion Anal	vsis L	ised	in eve	ry fault static	n. U.T.N	<i>A. coc</i>	ordina	tes zo	ne 3	0 (mei	res). Ro	ck age (mat.)	c = 0	iaternary,	: Diap.k	(eup. =)	facies
Keuper; Mioc.la	1C. =	lacustri	ne Late Mi	iocene; R.	volc.	= VO	Icanic	rock; Plioc =	Pliocene	9. DE	M = 0	orientă	ation //	of ma	ximum	shortening av	(is; DS =	standarc	l deviat	ion of D	EYM;
$(\sigma_1) (\sigma_2) (\sigma_3) = re$	lativ.	o, o ₂ o e magr	<pre>s = onentat vitudes of t</pre>	tion of the the princip	al str	ress ;	stress axis; μ	axis; n = sur = frictional c	ess teris oefficiei	ur sna nt; α =	theoi	retic s	= (ro; triati	on de	/io1 - 03/) /iation v	;	ueviatic ition	aut to tu	brincipa	al stress	dXIS,

Fig. 4. Representación gráfica de las soluciones obtenidas con el método de inversión de esfuerzos por estaciones individuales de medida

Fig. 4. Stereonets of the fault population analysis with the Stress Inversion Method in every fault station

predominio de las fallas normales sobre las inversas (Fig. 5A). También aparecen dos modas principales de Dey, una NO-SE y otra NE-SO, que quedan muy marcadas si se separan los datos que indican estas dos direcciones (Fig. 5A).

Para poder llevar a cabo un cálculo más preciso del tensor de esfuerzos se han proyectado en sendos estereogramas los ejes σ_1 , σ_2 y σ_3 , de las soluciones obtenidas con el método de inversión de esfuerzos, con el fin de separar estaciones tensorialmente compatibles (Fig. 5B). En el estereograma en el que se proyectan las soluciones de σ_1 y σ_2 conjuntamente (Fig. 5B) (tensores compresivos y de desgarre) se puede observar cómo aparecen también las dos modas de $\sigma_{\rm HMAX}$ subortogonales (NO-SE y NE-SO) obtenidas con el modelo de deslizamiento. En el caso de los tensores extensivos la dispersión es mucho mayor, indicando una solución de extensión triaxial (Fig. 5B), aunque se observa una cierta acumulación de ejes NE-SO asociada a la dirección de σ_{HMAX} NO-SE. Por tanto, aparecen dos modas subortogonales de σ_{HMAX} , una NO-SE (campo 1) y otra NE-SO (campo 2). Con estos datos se pueden separar las estaciones que se ajusten a cada dirección de σ_{HMAX} : por un lado, fallas inversas y desgarres y, por otro, fallas normales compatibles con las primeras.

Mapas de trayectorias de esfuezos

Ambos conjuntos de datos se han utilizado para el cálculo de las trayectorias de σ_{HMAX} mediante la metodología propuesta por Lee y Angelier (1994). Las trayectorias del campo 1 se disponen oblicuas (10° a 15°)

Fig. 5. Rosas de orientaciones de máximo acortamiento (Dey) obtenidas con el Modelo de Deslizamiento para: A) conjunto de todos los datos (610 fallas), fallas compatibles con la moda de Dey = $143^{\circ}(228 \text{ datos})$ y fallas compatibles con la moda de Dey = 59° (382 datos); B) proyección estereográfica de los ejes de esfuerzo calculados con el método de inversión de esfuerzos, soluciones compresivas y de desgarre (σ_1 y σ_2) y soluciones extensivas (σ_3)

Fig. 5. Rose diagrams of maximum shortening (Dey) calculated by the Slip Model: A) all data (610 faults), mechanic compatible faults with the mean stress trend Dey = 143° (228 data) and mechanic compatible faults with the Dey = 59° (328 data); stereographic projection of the stress axes solutions from the Stress Inversion Method, compressive and strike-slip solutions (σ_1 y σ_2) and extensional solutions (σ_3)

a los principales desgarres de la zona y son compatibles con el movimiento destrorso de estos. En la mitad N de la zona las trayectorias son casi paralelas a los desgarres, por lo que estas adquieren una componente de movimiento más normal a normal-direccional (Fig. 6A). El campo 2 se dispone oblicuo a las fallas normales E-O que generan las cuencas lacustres del Mioceno superior, con lo que la componente de movimiento es normal-direccional. Sin embargo, las fallas normales que limitan la Cuenca de Camarillas-Las Minas en sus bordes N y S, que son unas de las más importantes en la zona y activas en la actualidad (se han identificado facetas triangulares), son casi paralelas a las trayectorias de esfuerzo. Esto corrobora su carácter normal y los fuertes fenómenos extensivos observados en la cuenca (Fig. 6B).

Siguiendo con los resultados obtenidos con cada estación individualmente, se han agrupado estaciones en función del tensor solución obtenido para cada una y la dirección de $\sigma_{\rm HMAX}$ a la que se ajustan. Se han unido en tres grupos principales: fallas inversas (σ_3 vertical), normales (σ_1 vertical) y desgarres (σ_2 ver-

tical). Estos grupos se han tratado con el método de inversión de esfuerzos y se han separado en subpoblaciones que presentaban orientaciones opuestas de σ_{HMAX} , es decir, según los dos campos deducidos anteriormente.

El campo 1 (NO-SE) está definido principalmente por fallas normal-direccionales a normales, con una población minoritaria de fallas inversas (Fig. 7A). La subpoblación de fallas inversas cuenta con tan sólo 11 datos, que dan con el método de los diedros rectos una figura de interferencia típica de falla inversa con una dirección de acortamiento media N10E. Según el método de inversión de esfuerzos σ_1 , es subhorizontal hacia los N173E, con un tensor de esfuerzos de compresión triaxial (R = 0,62). Las fallas normales representan una subpoblación de 130 datos que, con el método de inversión de esfuerzos, se han dividido en un grupo de fallas normal-direccionales (57 datos) y normales (73 datos). Las fallas normaldireccionales generan una figura de interferencia de diedros rectos típica de este tipo de fallas, con una orientación de σ_{HMAX} NO-SE y con el método de inversión σ_2 es subhorizontal hacia los N150E (R = 0,3) (Fig. 7B). La subpoblación de fallas normales ofrece una solución de extensión triaxial muy próxima a radial, que se puede observar tanto en la figura de interferencia del método de los diedros rectos como en la solución calculada con el método de inversión de esfuerzos (R = 0,03), con σ_3 hacia los N65E (Fig. 7C).

El campo 2 (NE-SO) vuelve a estar definido en su mayoría por fallas normales. En este caso también se han separado dos subpoblaciones que se ajustan a este campo; por un lado, fallas inversas (64 datos) y, por otro, fallas normales (187 datos). Las fallas inver-

Fig. 6. Representación cartográfica de las orientaciones de σ_{HAMX} obtenidas con el método de inversión de esfuerzos de las estaciones de análisis poblacional de fallas y de las trayectorias de esfuerzo calculadas; A) Campo 1, y B) Campo 2 Fig. 6. Cartographic representation of σ_{HAMX} calculated by Stress Inversion Method in every fault population analysis station and stress trajectories; A) Stress field 1 rose diagram of mean stress trends. Stress trajectories: A) Stress field 1, and B) Stress field 2

sas se ajustan a una solución de figura de interferencia compresiva, la cual se ve confirmada con los resultados del método de inversión, que indica una compresión uniaxial (R = 0,07) (Fig. 7D), con σ_1 horizontal hacia los N49E. La otra subpoblación está compuesta por fallas normales con una extensión máxima hacia los N159E, tendiendo a radial (R = 0,2) (Fig. 7E).

Discusión sobre los campos de esfuerzo recientes (Mioceno superior-Cuaternario)

Existen estudios previos sobre el cálculo de tensores y trayectorias de esfuerzo recientes en las Béticas a partir de datos microestructurales (fallas y estilolitos), como es el trabajo de Galindo Zaldívar *et al.* (1993), en el que obtienen trayectorias de esfuerzo NO-SE

Fig. 7. Soluciones obtenidas con el método de inversión de esfuerzos para la totalidad de los datos separando las poblaciones que se ajustan al campo 1: A) fallas inversas, B) fallas normales y C) extensión triaxial; y al campo 2: D) fallas inversas y E) fallas normales *Fig. 7. Stress solutions for all data obtained by the Stress Inversion Method, Stress Field 1 compatible fault stations: A) reverse faults, B) normal faults and C) radial strain; and Stress Field 2 compatible fault stations: D) reverse faults and E) normal faults*

equivalentes a las calculadas para el campo 1 durante el Mioceno superior-Cuaternario. Con los datos puntuales de estos autores y con los de Benkhelil (1976), Stapel et al. (1996) y Huibregtse et al. (1998), se han recopilado 55 estaciones de datos microestructurales de las que se han obtenido 69 orientaciones de $\sigma_{\text{\tiny HMAX}}$. De estas 69 orientaciones de $\sigma_{\text{\tiny HMAX}}$ 52 se ajustan a una moda NO-SE y 17 a una moda subperpendicular (Fig. 8). Se ha realizado una interpolación de estos datos con el método de Lee y Angelier (1994), separando estas dos modas que se ajustan a los campos 1 y 2 obtenidos con los datos tomados en el presente trabajo, con las que se han obtenido sendas trayectorias de esfuerzos (Fig. 8). Estas tienen una traza muy similar a las obtenidas con el análisis poblacional de fallas en el área de estudio, que como se puede observar en la figura 8 cubre un hueco de datos en esta zona. Esto indica la uniformidad de las soluciones obtenidas por diferentes autores en las Béticas Externas que corrobora la existencia de un campo de esfuerzos NO-SE, responsable de la estructuración de la Cadena Bética y un campo secundario NE-SO generado posiblemente por escapes tectónicos.

Herraiz et al. (2000) realizan un estudio a escala peninsular de la fracturación reciente (Mioceno-Cuaternario) para el que han contado con 8.657 mediciones en campo de fallas con estrías repartidas en 409 estaciones, a las que hay que sumar 324 estaciones obtenidas de la bibliografía existente. Con la suma total de los datos también aparecen dos modas principales: una muy bien definida hacia los N140E y otra peor definida hacia los N40E. Ambas modas corresponden a fallas normales, que son las fallas más abundantes junto con los desgarres. Con los resultados individuales de las estaciones de medida calculan las trayectorias de esfuerzo con el método de Lee y Angelier (1994) para las dos direcciones principales de $\sigma_{{}_{\text{HMAX}}}$ y obtienen una distribución de trayectorias equivalentes a las obtenidas en el presente trabajo (tanto para el campo 1 como para el campo 2). Estos mismos autores también llevan a cabo un estudio por zonas en el que diferencian Béticas Externas e Internas. En las Béticas Externas las soluciones indican todo tipo de regímenes tectónicos, aunque hay un predominio de soluciones extensivas que orientan $\sigma_{\mbox{\tiny HMAX}}$ hacia el NO-SE. En las Béticas Internas hay un predominio de fallas normales que indican una direc-

Fig. 8. Trayectorias de esfuerzo recientes (Mioceno-Cuaternario), calculadas a partir de datos bibliográficos tomados de: Benkhelil (1976), Stapel *et al.* (1996) y Huibregtse *et al.* (1998)

Fig. 8. Recent stress trajectories (Miocene-Quaternary) obtained by bibliographic data from: Benkhelil (1976), Stapel et al. (1996) and Huibregtse et al. (1998)

ción de σ_{HMAX} NE-SO, con algunas soluciones compresivas compatibles con esta dirección. No obstante, también detectan una extensión en esa misma dirección, con lo que son frecuentes las extensiones triaxiales. Las trayectorias de σ_{HMAX} en ambas zonas, tanto para el campo 1 como para el campo 2, son muy similares a las obtenidas en el presente estudio.

Herraiz *et al.* (2000) justifican la presencia muy mayoritaria de fallas normales, tanto en el campo principal NO-SE como en el secundario NE-SO, debido a que la toma de datos geológicos se ha realizado exclusivamente en superficie, donde es más probable que se generen fallas normales. Según estos autores, las soluciones extensivas por zonas estructurales homogéneas a escala peninsular tienden a ser triaxiales o uniaxiales, con una dirección mayoritaria de $\sigma_{\rm HMAX}$ hacia el NO-SE.

Los resultados obtenidos del análisis poblacional de fallas en el presente estudio son compatibles con todo lo citado anteriormente. El que los campos 1 y 2 estén definidos por fallas normales se ve acentuado en la zona de trabajo por realizarse las medidas en cuencas extensionales. Esto hace que las fallas inversas medidas sean de escaso desarrollo (decimétricas en la mayoría de los casos) y generadas como consecuencia de fenómenos de escape tectónico a pequeña escala. Esta etapa extensiva coincide con las últifases compresivas alpinas (Tortoniense mas inferior-medio) del emplazamiento del arco estructural Cazorla-Alcaraz-Hellín (Martín Velázquez et al., 1998), etapa en la que se inicia la formación de grabens, delimitados por fallas normales E-O, donde se emplazan los sistemas lacustres estudiados. Esta extensión va acompañada de una intensa actividad halocinética y magmática, siendo esta última indicativa de la importancia de los desgarres NO-SE que cruzan la zona y que deben afectar a toda la corteza.

La extensión deducida con el análisis poblacional de fallas se podría explicar con dos hipótesis diferentes:

1) Extensión generada por el colapso del edificio bético después de su emplazamiento (Calvo, 1978; Elízaga y Calvo, 1988; Sanz de Galdeano y Vera, 1991).

 2) Extensión en superficie generada por el ascenso de la Cordillera Bética (Van der Beek y Cloeting, 1992).

Con los datos que se manejan resulta difícil discernir entre ambas hipótesis, pero si se utilizan los resultados obtenidos del análisis de la sismicidad (Rodríguez-Pascua y de Vicente, 2001, en este mismo volumen), parecen favorecer la segunda de ellas.

Conclusiones

Mediante el análisis poblacional de fallas se han obtenido dos campos de esfuerzos subortogonales, en la zona de transferencia norte del arco estructural Cazorla-Alcaraz-Hellín, activos durante el Mioceno superior-Cuaternario. Las orientaciones medias de los campos de esfuerzo muestran dos direcciones de extensión, asociadas a sendas direcciones medias de σ_{HMAX}: N143E y N059E. La dirección N143E es la responsable de la estructuración del área, compatible con el emplazamiento del arco de cabalgamientos de Cazorla-Alcaraz-Hellín y con las trayectorias de esfuerzos deducidas por diferentes autores, para el sureste de la Península Ibérica durante el mismo período. Estas fallas son de carácter normal a normaldireccional. El segundo campo, de dirección N059E, está asociado a las fallas normal-direccionales (E-O) que limitan las cuencas lacustres, con una dirección de extensión ortogonal responsable de la génesis estas cuencas. Las fallas inversas que se han podido medir en ambos campos se localizan en afloramientos aislados (no llegan a alcanzar escala cartográfica) en el interior de las cuencas lacustres y están asociadas a fenómenos locales de escape tectónico. Esta marcada extensión de la zona está asociada a un levantamiento generalizado de la Cadena Bética durante el Mioceno superior-Cuaternario, producido por una flexura cortical de dirección E-O (definida por varios autores). Por tanto, estos resultados son compatibles con la dinámica de las principales fallas de la zona y con el contexto tectónico del suroeste de la Península Ibérica, marcado por el choque de la Placa Africana contra la Microplaca Ibérica.

Agradecimientos

Este trabajo se ha financiado con una beca del Consejo de Seguridad Nuclear (al primer autor). Agradecemos a los revisores de este trabajo, Dr. D. Carlos Sanz de Galdeano y Dr. D. Jesús M. Soria, sus acertados comentarios que han constituido una apreciable contribución a este trabajo.

Referencias

- Angelier, J. y Mechler, P. 1977. Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droites. Bulletin Societé géologique France, 7, t XIX, 6, 1309-1318.
- Benkhelil, J. 1976. Étude Tectonique de la Terminaison Occidentale des Cordillères Bétiques (Espagne). Tesis Doctoral. Universidad de Niza. Inédita. 180 pp.

- Bousquet, J. C., Montenat, C. y Philip, H. 1976. La evolución tectónica reciente en las Cordilleras Béticas Orientales.
 En: Reunión sobre la geodinámica de la Cordillera Bética y Mar de Alborán, Universidad de Granada. 59-78.
- Calvo, J. P. (1978): Estudios petrológico y sedimentológico del Terciario marino del sector central de la provincia de Albacete. Estudios Geológicos, 34, 407-429.
- Delvaux, D. 1993. The Tensor program for paleostress reconstruction: examples from the east African and the Baikal rift zones. Terra Abstracts, 5, 1, 216.
- Delvaux, D., Levi, K., Kajara, R. y Sarota, J. 1992. Cenozoic paleostress and kinematic evolution of the Rukwa. North Malawi rift valley (East African Rift System). Bulletin Centre Research Explorations Prod. Elf-Aquit., 16, 2: 283-406.
- De Ruig, M. J. 1992. Tectono-sedimentary evolution of the Prebetic fold belt of Alicante (SE Spain). A study of stress fluctuations and foreland basin deformation. Tesis doctoral, Vrije Universiteit de Amsterdam, 207 pp.
- De Vicente, G. 1988. Análisis Poblacional de Fallas. El sector de enlace Sistema Central-Cordillera Ibérica. Tesis Doctoral, Univ. Complutense de Madrid, Publicaciones de la Universidad Complutense de Madrid, Madrid, 317 pp.
- Elízaga, E. 1994. Analisis de las facies y petrología de los depósitos lacustres de edad Neógeno superior. Albacete. España. Instituto de Estudios Albacetenses, Albacete, 216 pp.
- Elízaga, E. y Calvo, J. P. 1988. Evolución sedimentaria de las cuencas lacustres neógenas de la Zona Prebética (Albacete, España). Relación, posición y efectos del vulcanismo durante la evolución. Boletín Geológico y Minero, 99, 837-846.
- Galindo-Zaldívar, J., González-Lodeiro, F. y Jabaloy, A. 1993. Stress and palaeostress in the Betic-Rif cordilleras (Miocene to the present). Tectonophysics, 227, 105-126.
- Guézou, J. C., Frizon de Lamotte, D., Coulon, M. y Morel, J.
 L. 1991. Structure and kinematics of the Prebetic nappe complex (Southern Spain): definition of a "Betic Floor Thrust" and implications in the Betic-Rif orocline. Annales Tectonicae, V, 1, 32-48.
- Hermes, J. J. 1985. Algunos aspectos de la estructura de la Zona Subbética (Cordilleras Béticas, España meridional). Estudios Geológicos, 41, 157-176.
- Herraiz, M., De Vicente, G., Lindo, R., Giner, J., Simón, J.L., González Casado, J.M., Vadillo, O., Rodríguez-Pascua, M.A., Cicuéndez, J.I., Casas, A., Cabañas, L., Rincón, P., Cortés, A.L., Ramírez, M. y Lucini, M. 2000. The recent (Upper Miocene to Quaternary) and present tectonic stress distributions in the Iberian Península. Tectonics, 19, 4, 762-786.

- Huibregtse, P.W., van Alebeek, J.M., Zaal, M.E.A. y Biermann, C. 1998. Paleostress analysis of the northern Nijar and southern Vera basin: Constraints for the Neogene displacement history of mayor strike-slip faults in the Betic Cordilleras, SE Spain. Tectonophysics, 300 (1-4), 79-101.
- Lee, J.C. y Angelier, J. 1994. Paleostress trajectory maps based on the results of local determinations: the "lissage" program. Computers and Geosciences, 20 (2): 161-191.
- Linares Girela, L. y Rodríguez Estrella, T. 1973. Observaciones sobre la geología del sector Alcaraz-Robledo (Zona Prebética, provincia de Albacete). Boletín Geológico y Minero, LXXXIV-VI: 419-425.
- Martín Velázquez, S., De Vicente, G., Rodríguez Pascua, M.A. y Calvo, J.P. 1998. Análisis dinámico del sistema de desgarres NO-SE del Prebético de Albacete. Revista de la Sociedad Geológica de España, 11 (3-4), 369-382.
- Park, R.G. 1988. Geological structures and moving plates. Blackie, New York, 337 p.
- Pegoraro, O. 1972. Application de la microtectonique à un étude de neotectonique. Le golfe Maliaque (Grèce centrale). Thèse Illème cycle, U.S.T.L. Montpellier, 41 pp.
- Reches, Z. 1978. Analysis of faulting in tree-dimensional strain fields. Tectonophysics, 47, 1-2, 109-129.
- Reches, Z. 1992. Constraints on the Strength of the Upper Crust from Stress Inversion of Fault Slip Data. Journal of Geophysical Research., 97, B9, 12481-12493.
- Reches, Z. y Dieterich, J.H. 1983. Faulting of rocks in threedimensional strain fields; I. Failure of rocks in polyaxial servo-control experiments. Tectonophysics, 95, 111-132.
- Rodríguez Pascua, M.A. 2001. Paleosismicidad y sismotectónica de las cuencas neógenas lacustres del Prebético de Albacete. Instituto de Estudios Albacetenses. Albacete, 358 pp.
- Rodríguez-Pascua, M.A. y de Vicente, G. 2001. Análisis de la fracturación en materiales recientes (Mioceno superior-Cuaternario) en el Prebético Externo de Albacete. Boletín Geológico y Minero. En este mismo volumen.
- Sanz de Galdeano, C. y Vera, J. A. 1991. Una propuesta de clasificación de las cuencas neógenas béticas. Acta Geológica Hispánica., 26, 3-4, 205-227.
- Stapel, G., Moeys, R. y Biermann, C. 1996. Neogene evolution of de Sorbas basin (SE Spain) Determined by paleostress analysis. Tectonophysics, 255, 291-305.
- Van der Beek, P. A. y Cloeting, G. 1992. Lithospheric flexure and the tectonic evolution of the Betic Cordilleras (SE Spain). Tectonophysics, 203, 325-344.

Recibido: Julio 2001

Aceptado: Septiembre 2001