ACTUALIZACION DEL INVENTARIO NACIONAL DE RECURSOS DE TITANIO
ACTUALIZACION DEL INVENTARIO NACIONAL DE RECURSOS DE TITANIO
1. GENERALIDADES .. 1
 1.1. HISTORIA .. 2
 1.2. PROPIEDADES Y USOS 2
 1.3. MINERALES» 6
 1.4. YACIMIENTOS .. 7
 1.4.1. TIPOLOGIA 7
 1.5. TECNICAS DE INVESTIGACION 12

2. EL TITANIO EN EL MUNDO 14
 2.1. RECURSOS Y RESERVAS 15
 2.2. MINERIA ... 18
 2.3. MINERALURGIA ... 19
 2.3.1. CONCENTRACION DE MINERALES PRIMARIOS EN ASOCIACIÓN CON MAGNETITAS ... 23
 2.3.2. CONCENTRACION DE MINERALES PRIMARIOS EN ASOCIACIÓN CON HEMATITAS ... 27
 2.3.3. CONCENTRACION DE MATERIALES SECUNDARIOS 30
 2.4. PROCESOS DE ELABORACION Y TRANSFORMACION 31
 2.4.1. PRODUCTOS DE PRIMERA TRANSFORMACION 35
 2.4.2. PRODUCTOS SEMIELABORADOS 37
 2.4.3. PROCESOS FINALES. METALURGIA DEL TITANIO 45
 2.5. DATOS ECONOMICOS 53
 2.5.1. PRODUCCION MINERA 54
 2.5.2. PRODUCCION DE SEMIELABORADOS 58
 2.5.3. PRODUCCION MUNDIAL DE TITANIO METAL Y SUS ELABORADOS ... 60
 2.5.4. COMERCIO INTERNACIONAL 68
 2.5.4.1. Importaciones mundiales 68
 2.5.4.2. Exportaciones mundiales 75
 2.5.5. CONSUMO MUNDIAL 81
 2.5.6. PRECIOS ... 84

3. EL TITANIO EN ESPAÑA .. 90
 3.1. YACIMIENTOS .. 91
 3.1.1. GALICIA .. 92
 3.1.1.1. La Coruña 94
 3.1.1.1.1. Yago y Carmen 94
 3.1.1.1.2. Estrella y Mª Antonia 96
 3.1.1.1.3. Grupos Mineros de Tordoya y Erbcedo 98
 3.1.1.1.4. Pala Fracción 1ª 100
 3.1.1.1.5. Playa de Balares 101
 3.1.1.1.6. Otros yacimientos 102
 3.1.1.2. Pontevedra-Orense 104
3.1.2. OESTE ... 104
 3.1.2.1. Zamora 105
 3.1.2.2. Salamanca 105
 3.1.2.3. Cáceres 106
 3.1.2.4. Badajoz 108

3.1.3. ANDALUCIA 108
 3.1.3.1. Almería 108
 3.1.3.2. Málaga 109
 3.1.3.3. Sevilla 109
 3.1.3.4. Córdoba 109
 3.1.3.5. Huelva 109
 3.1.3.5.1. Moguer-Almonte 111

3.1.4. RESTO DE ESPAÑA 112
 3.1.4.1. Cataluña 112
 3.1.4.2. Guadalajara 112
 3.1.4.3. Asturias-León 113
 3.1.4.4. Canarias 113
 3.1.4.5. Madrid 113

3.2. PLANTAS DE ELABORACION Y TRANSFORMACION 114
 3.2.1. PLANTA DE TIOXIDE ESPAÑOLA, S.A., EN HUELVA 114
 3.2.2. PLANTA DE DOWN CHEMICAL IBERICA, S.A., EN VIZCAYA 116

3.3. DATOS ECONOMICOS 117
 3.3.1. PRODUCCION MINERA 117
 3.3.1.1. Producción de semielaborados 120
 3.3.1.2. Producción metalúrgica 121
 3.3.2. COMERCIO EXTERIOR 122
 3.3.2.1. Comercio de minerales y concentrados 122
 3.3.2.2. Comercio de productos químicos de tita- nio 125
 3.3.2.3. Comercio de titanio metal 130
 3.3.2.4. Comercio de ferroaleaciones de titanio ... 130
 3.3.3. CONSUMO. MODELO DE CONSUMO 135
 3.3.4. PRECIOS Y COMERCIALIZACION 139
 3.3.4.1. Formas de comercialización 140

4. RECURSOS ESPAÑOLES .. 143
 4.1. ECONOMICIDAD.. 144
 4.1.1. PLANTEAMIENTO GENERAL 145
 4.1.2. EVALUACION DE LA EXPLOTABILIDAD DE LOS DEPOSITOS ESPAÑOLES DE TITANIO 148
 4.1.2.1. Inversiones 148
 4.1.2.2. Ingresos 149
 4.1.2.3. Gastos 150
 4.1.2.4. Vida útil del yacimiento. Volumen de re- cursos .. 153
 4.1.2.5. Conclusiones 154

4.2. CRITERIOS DE CLASIFICACION 155

4.3. RECURSOS ... 157

5. CONCLUSIONES .. 162

BIBLIOGRAFIA .. 166
INDICE DE CUADROS

CUADRO Página

1 Propiedades físicas del titanio 4
2 Recursos mundiales de titanio (miles de t) 16
3 Recursos mundiales de titanio (%) 17
4 Características de las principales explotaciones de titanio del mundo 20
5 Producción mundial de ilmenita 55
6 Producción mundial de rutilo 56
7 Principales Compañías productoras de rutilo sintético 59
8 Principales Compañías productoras de slag 61
9 Principales Compañías productoras de dióxido de titanio .. 62
10 Capacidad mundial de producción de dióxido de titanio. 65
11 Importaciones mundiales de minerales de titanio 69
12 Importaciones mundiales de ilmenita 71
13 Importaciones mundiales de rutilo 72
14 Importaciones mundiales de titanio metal 73
15 Importaciones mundiales de óxidos de titanio 74
16 Exportaciones mundiales de minerales de titanio 76
17 Exportaciones mundiales de ilmenita 77
18 Exportaciones mundiales de rutilo 78
19 Exportaciones mundiales de titanio metal 79
20 Exportaciones mundiales de óxido de titanio 80
21 Consumo de TiO2 por usos finales (%) 83
22 Precios mundiales de los minerales de titanio...... 85
23 Precios mundiales del titanio metal 86
24 Precios chatarras de titanio 87
25 Producción nacional de mineral de titanio 118
26 Producción nacional de dióxido de titanio 121
27 Importaciones españolas de ilmenita 123
28 Importaciones españolas de minerales de titanio (rutilo) .. 124
<table>
<thead>
<tr>
<th>Página</th>
<th>CUADRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Importaciones españolas de óxidos de titanio 126</td>
</tr>
<tr>
<td>30</td>
<td>Importaciones españolas de pigmentos a base de óxidos de titanio .. 127</td>
</tr>
<tr>
<td>31</td>
<td>Exportaciones españolas de óxidos de titanio 128</td>
</tr>
<tr>
<td>32</td>
<td>Exportaciones españolas de pigmentos a base de óxidos de titanio .. 129</td>
</tr>
<tr>
<td>33</td>
<td>Importaciones españolas de titanio en bruto en polvo. 131</td>
</tr>
<tr>
<td>34</td>
<td>Importaciones españolas de titanio manufacturado 132</td>
</tr>
<tr>
<td>35</td>
<td>Importaciones españolas de ferrotitanio y ferrosilicotitanio ... 133</td>
</tr>
<tr>
<td>36</td>
<td>Exportaciones españolas de ferrotitanio y ferrosilicotitanio ... 134</td>
</tr>
<tr>
<td>37</td>
<td>Consumo aparente de minerales de Ti 136</td>
</tr>
<tr>
<td>38</td>
<td>Consumo aparente de óxidos de titanio 137</td>
</tr>
<tr>
<td>39</td>
<td>Consumo de titanio metal 138</td>
</tr>
<tr>
<td>40</td>
<td>Consumo por usos finales de TiO₂ 139</td>
</tr>
<tr>
<td>FIGURA</td>
<td>Contenido de titanio en rocas magmáticas</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Esquema de tratamiento de ilmenita primaria</td>
</tr>
<tr>
<td>2</td>
<td>Tratamiento de anatasa en Brasil</td>
</tr>
<tr>
<td>3</td>
<td>Esquema de tratamiento de ilmenita-hematites</td>
</tr>
<tr>
<td>4</td>
<td>Esquema general de tratamiento de arenas de playa</td>
</tr>
<tr>
<td>5</td>
<td>Diagrama general de tratamiento de arenas de depósitos aluviales</td>
</tr>
<tr>
<td>6</td>
<td>Procesos de utilización del titanio</td>
</tr>
<tr>
<td>7</td>
<td>Esquema del proceso de cloración para obtención del bóxido de titanio</td>
</tr>
<tr>
<td>8</td>
<td>Esquema del proceso de sulfatación para obtención del bóxido de titanio</td>
</tr>
<tr>
<td>9</td>
<td>Proceso de reducción por sodio en dos etapas</td>
</tr>
<tr>
<td>10</td>
<td>Diagrama de flujo para obtención de titanio metal (ICI Mond)</td>
</tr>
<tr>
<td>11</td>
<td>Diagrama de flujo del proceso electrolítico para obtención del Ti metal</td>
</tr>
</tbody>
</table>
1. GENERALIDADES
1.1. HISTORIA

El titanio es un metal conocido desde hace unos 200 años. En 1791, estudiando el pastor inglés W. Gregor unas arenas negras procedentes de Menacan, cerca de Falmouth (Cornwall, Inglaterra), encontró determinados granos de color gris oscuro sensibles a la acción del imán, dándole el nombre de menacanita. En 1796, M.H. Klaproth analizó una muestra del denominado chorlo rojo de Hungría y observó que estaba formado por un óxido mineral a cuyo metal correspondiente llamó titanio, aludiendo a los titanes, primeros hijos de la Tierra. En la misma época descubrió también que un mineral de Passan, al que dio el nombre de titanita, contenía el 33% de anhidrido titánico. Por último, en 1779 comprobó que la menacanita era un óxido de titanio.

Investigaciones realizadas por H. Rose y Berzelius con el anhídrido titánico puro dieron lugar a la obtención en 1824 del elemento, en pequeño estado de pureza, bajo la forma de polvo negro. Hasta 1910 no se pudo obtener el titanio puro, logro obtenido por las investigaciones de M.A. Hunter. Fue a partir de 1924 cuando comenzó la obtención y comercialización del óxido de titanio como base para la fabricación de pigmentos blancos y su utilización en pinturas, lacas, barnices, papel, etc. La producción de titanio metal comenzó a raíz de la Segunda Guerra Mundial, utilizándose como tal o como componente de diversas aleaciones especiales por su alto punto de fusión, teniendo sus principales aplicaciones en las industrias aeronáuticas, navales y espaciales.

1.2. PROPIEDADES Y USOS

El titanio es un metal de brillo gris metálico parecido a la plata, no existe en estado natural por su gran afinidad con el oxígeno y otros elementos.

A temperatura ambiente, el titanio posee una estructura hexagonal compacta, conocida como α-titánio. Esta es estable hasta los
880° C, por encima de la cual se transforma en una estructura cúbica que se denomina β-titano, y que es estable hasta la temperatura de fusión, 1.668° C.

La baja densidad en relación con su resistencia a la tracción tiene como consecuencia que el titanio y sus aleaciones proporcionan una elevada resistencia, con un porcentaje en peso muy reducido.

El titanio sin alear presenta una baja conductividad térmica y una elevada resistividad eléctrica. Ambos valores son semejantes a los registrados para los aceros inoxidables.

La reactividad química del titanio solo es importante a temperaturas elevadas, permaneciendo prácticamente inactiva a temperatura ambiente.

Este metal proporciona una excelente resistencia ante los ataques por corrosión, ya sean generales o localizados, provocados por agentes oxidantes o neutros y por reductores débiles. Esta propiedad se ve afectada por la ausencia de aire, pues este es fundamental para la conservación de la capa protectora.

De igual forma el titanio resiste la acción corrosiva de numerosos ácidos con independencia de la temperatura.

A continuación se incluye el cuadro n. 1, en el cual se resuelven las principales propiedades físicas de este metal.
CUADRO Nº 1

PROPIEDADES FISICAS DEL TITANIO

Número atómico 22
Peso atómico 47,90
Densidad en g/cm³ 4,51
Punto de fusión en °C 1.668
Punto de ebullición en °C 3.000
Calor específico en cal/g °C 0,130
Conductividad térmica en cal/cm.seg °C 0,036
Resistividad eléctrica en μΩcm 48-60
Módulo de elasticidad en tracción en 10⁶ kg/mm² ... 24,4
Módulo de elasticidad en torsión en 10⁶ kg/mm² 10,1
Coeficiente de dilatación lineal en 10⁻⁵/°C 0,036
Dureza Brinell en kg/mm² 120-200
Razón de Poisson 0,34

De este conjunto de características las más aprovechadas son su resistencia mecánica y poco peso, resistencia a la corrosión y su elevada resistividad eléctrica.

Los usos del titanio pueden agruparse en tres apartados. Como metal puro, como componente de aleación, y en forma de producto químico (dióxido de titanio).

Se comentan a continuación las principales aplicaciones del dióxido de titanio y del titanio metal.

a) Dióxido de titanio

Pinturas: Utilización del dióxido de titanio como pigmento blanco, sustituyendo a pigmentos naturales y otros óxidos. Sus cualidades de cubricción (opacidad) e inalterabilidad permanente son excelentes. Asimismo se emplea en numerosas lacas y barnices.
Papel: Las principales cualidades que el TiO₂ aporta al papel, aparte de su blancura, son la coloración intensa de su masa a la que confiere una plena opacidad, y la nítida absorción de las tintas de impresión posterior.

Productos plásticos y sintéticos: La gran opacidad e inalterabilidad química del dióxido de titanio le hacen apto para su utilización en múltiples variedades de productos plásticos y resinas.

Productos de caucho: El TiO₂ utilizado como pigmento consigue un excelente grado de blancura sin modificar las propiedades esenciales de la goma.

Productos cerámicos y vidrio: Se incorpora el dióxido a la fabricación de plaquetas cerámicas, fibras minerales y de vidrio.

Fundentes: El TiO₂ está presente en las formulaciones relativas a revestimiento de electrodos para soldadura.

b) Titánio metal

Aleaciones: La presencia de titánio metal en aleaciones presenta numerosas ventajas, entre ellas darle mayor dureza y resistencia a la tracción y a la corrosión. Las principales aleaciones que se han desarrollado han sido con hierro (ferrotitano), manganeso, cromo, molibdeno, estaño y aluminio.

Industria aeronáutica y aeroespacial: El titánio mejora el ratio solidez/peso del acero, habiendo contribuido a aligerar de forma sensible el peso de las aeronaves mediante las aleaciones.
Industria naval: El comportamiento estable del titanio metal frente al agua y ambiente marino permite su utilización en una serie de elementos en contacto con agua salada o en atmósferas corrosivas.

Industria química: Utilizado por sus propiedades físicas y químicas para numerosas aplicaciones como ánodos electrolíticos, conductor y recipientes donde existen sustancias corrosivas, etc.

Otras industrias: Otros productos en los que se utiliza el titanio son, maquinaria textil, material quirúrgico y ortopédico, herramientas y máquinas herramientas, etc.

1.3. MINERALES

El titanio se presenta generalmente en la naturaleza en forma de óxido de titanio, TiO₂ y de óxido de titanio y de hierro TiO₂Fe.

De los aproximadamente 150 minerales de titanio que se han detectado, con un contenido superior al 1% de TiO₂, solamente se consideran en la actualidad como menas explotables la ilmenita y el rutilo y quizás el leucoxeno.

La ilmenita (TiO₂Fe) es uno de los minerales titáníferos más comunes y como mena de titanio el más importante. Aunque teóricamente contiene un 52,7% de TiO₂, casi nunca se presenta puro, sino formando mezclas isomorfas con la pirofanita, TiO₂Mn, y la giekielita, TiO₃. Se encuentra asociada generalmente con magnetita y hematites en rocas ígneas (anortositas, gabros, noritas, etc.), y en depósitos detriticos.

El rutilo es un dióxido de titanio puro, aunque corrientemente contiene Fe₂O₃ que puede llegar al 30% y trazas de VO₂. Es un constituyente accesorio de rocas ígneas (granitos, dioritas, etc.)
y rocas metamórficas (neises, esquistos, etc.), aunque principalmente se encuentra en depósitos de carácter detritico.

El leucoxeno se trata de una mezcla bastante compleja y de estructura cristalina en la que están presentes rutilo, anatasa, brookita, hematites y a veces esfena junto con una serie de compuestos amorfos. También puede encontrarse junto a ilmenita, perowskita y otros muchos minerales de titanio.

Otros minerales relativamente comunes son: Anatasa, TiO₂, con un contenido mínimo en óxido del 98,2%; Brookita, TiO₂, en estado natural contiene entre 94,1 y 98,8% de TiO₂; Perouskita, TiO₃ Ca, con contenido de TiO₂ entre 38,7 y 58,9%; Esfena o titanita, SiO₃TiCa, contiene en estado natural entre 38,7 y 58,9% de TiO₂; Ulvospinela, TiO₄Fe₂, contiene teóricamente el 21,4% de TiO₂.

1.4. YACIMIENTOS

El titanio es el noveno elemento mas abundante en la corteza terrestre (5.000 p.p.m.) y dentro de los metales ocupa el cuarto lugar después del aluminio, hierro y magnesio. Su proporción en las diversas formaciones geológicas, según Vinogradof, son las siguientes en p.p.m.: suelos, 4.600; arcillas y pizarras, 4.500; rocas ácidas, 2.300; intermedias, 8.000; básicas, 9.000; y ultrabásicas, 3.000. El titanio se clasifica dentro de los elementos litófilos y está presente en todas las rocas magmáticas. La mayor concentración de titanio la tiene el gabro con un porcentaje medio de 1,34 de TiO₂, encontrándose numerosos yacimientos de titanio asociados genéticamente a este tipo de rocas. En la Fig. 1 se muestran los contenidos medios de TiO₂, en diferentes tipos de rocas magmáticas.

1.4.1. TIPOLOGIA

Los diversos científicos que han estudiado los depósitos de titanio para realizar su clasificación han coincidido en dos
CONTENIDO DE TiO$_2$ EN ROCAS MAGMATICAS

FIGURA 1.
grandes tipos, los yacimientos primarios (en rocas) y los secundarios (placeres), teniendo en cuenta principalmente los procesos de formación y la asociación de los minerales con determinadas rocas.

En este trabajo se han tenido en cuenta las clasificaciones más conocidas, Routhier (1960), Mapa Previsor de Mineralizaciones de Titanio a escala 1:1.500.000 (IGME, 1972), Klemic y Sherman (1973), Smirnov (1977), y Schmidt y Eggert (1980).

La clasificación adoptada para este estudio es la siguiente, adoptada de las de Routhier y Smirnov.

A. En relación con complejos básicos
B. En relación con complejos alcalinos y sus carbonatitas.
C. Placeres.

A. En relación con complejos básicos

En las rocas básicas es muy frecuente encontrar la asociación Fe-Ti con V y sin apatito. Los minerales de estos yacimientos son predominantemente los hierro titanados.

Los depósitos de titanio asociados a rocas básicas pueden ser de tres tipos según la paragénesis: Magnetita e ilmenita, hematites e ilmenita e ilmenita y rutilo.

Casi todas las grandes concentraciones de hierro titanado están ligadas a complejos de rocas en las que abundan las anortositas, las mas importantes, y noritas. Morfolóxicamente los depósitos son tabulares (la mayoría) y mas o menos estratiformes, lentejones y schlieren.

Este tipo es en importancia de producción el segundo a nivel mundial y el primero en cuanto a reservas, en nuestro país existen pocos depósitos conocidos.
Ejemplos de estos yacimientos son:

Tellnes (Hange-i-Dalame, Noruega). Yacimiento de ilmenita-magnetita considerado el más importante a nivel mundial. Encaja en las anortositas del complejo norita-anortosita de Egeround. Ocupa un volumen de 2.300 m de longitud, anchura de 400 m y profundidad superior a los 350 m. Se han cifrado como seguras, unas reservas de mineral de 300 Mt. El contenido en ilmenita es del 30%, lo que supone un 18% de TiO₂, y 2% de magnetita. Allard Lake (Quebec, Canada). El depósito de ilmenita-hematites se encuentra en una masa de anortosita, fundamentalmente, enclavada en neises del precámbrico. Tiene morfología variada, tabular, dique y lentejón. Las reservas son aproximadamente de 90 Mt con un 34% de TiO₂ y un 40% de Fe.

B. En relación con complejos alcalinos y sus carbonatitas

En estos complejos, de composición ultrabásica alcalina, el titanio está asociado al hierro y fósforo (apatito), se encuentra en forma de ilmenita, titanio-magnetita, esfena y rutilo principalmente y asociado a rocas con déficit de sílice, sienitas nefelínicas.

Como ejemplo de este tipo puede citarse:

Chibina, situado en la península de Kola, URSS, es un complejo alcalino asociado a ultrabasitas en el que se explota principalmente el apatito pero se recupera el titanio de mineralizaciones de titanio-magnetita. Jacupiranga, en el distrito de Sao Paulo (Brasil), donde se explota un complejo alcalino de carbonatitas con mineralizaciones de apatito (92%), magnetita, esfena y perowskita.
C. Placeres

El titanio es resistente a la meteorización física y química y al transporte aluvionar, y se concentra en depósitos residuales, eluviales y aluviales. Es el tipo de yacimiento de mayor interés mundial por su producción y el segundo en cuanto a reservas.

La paragénesis de estos aluviones es: ilmenita, rutilo, leucoxeno, circón, monacita y xenotima entre otros.

En el caso del titanio revisten especial importancia los aluviales de playa (arenas negras) y de dunas. Prácticamente la mayoría de estos depósitos aparecen alineados a lo largo del litoral costero. No solo se encuentran en las líneas costeras actuales, sino que pueden existir hasta 20-30 km tierra adentro en la zona de líneas costeras fósiles y en sus dunas correspondientes.

En la mayoría de este tipo de yacimientos el contenido de TiO₂ de la ilmenita alcanza aproximadamente el 54% y en casos óptimos, EE.UU. e India, llega al 60-65%.

Entre otros, como ejemplo destacan:

Richards Bay (Natal, Rep. de Suráfrica). El yacimiento se extiende paralelo a la línea costera de Zuzuland con anchura de 17 km y formado por dunas de unos 80 m de altura. Se han establecido reservas superiores a los 700 Mt, conteniendo de 5-7% de ilmenita y 0,2-0,3% de rutilo. **Trail-Ridge** (Florida, EE.UU.). El depósito está constituido por aluviones fósiles, ocupa una extensión de 30 km de longitud y de 1-2,7 km de anchura con potencia de unos 100 m. Las reservas de arena se estiman en más de 500 Mt, conteniendo un 49-50% de ilmenita y de 1-4% en rutilo.

Otros depósitos de interés a nivel mundial son los de la costa Este y Oeste de Australia y Sierra Rutile en Sierra Leona,
predominando el rutílo y Kerala (India), Sri Lanka, Ucrania y Malasia, con alto contenido en ilmenita.

La mayoría de los yacimientos españoles conocidos y explotados pertenecen a este tipo. Destacan por su interés los situados en las provincias de La Coruña y Huelva, otras provincias con indicios son las de Zamora, Salamanca, Extremadura y Madrid.

1.5. TECNICAS DE INVESTIGACION

Las técnicas de utilizadas para detectar mineralizaciones de titanio vienen ligadas no solamente al tipo de yacimientos que se espera encontrar sino también a los probables minerales asociados a ellos.

Aunque la metodología a seguir es similar para ambos casos, es conveniente diferenciar entre depósitos primarios y secundarios.

En los yacimientos primarios se comienza con una cartografía, primero general y luego de detalle, mediante la cual se delimiten zonas favorables de formaciones rocosas y sus características estructurales y petrográficas que faciliten las fases posteriores de investigación. Recordando que en los complejos de anortositas y gabros la ilmenita se suele presentar cerca de los bordes y en las formaciones de gabros, los cuerpos titanníferos tienen forma irregular y diseminada que dificultan su localización.

Dado que la ilmenita va asociada generalmente a magnetita y hematites, la aplicación de procedimientos geofísicos, particularmente la magnetometría, tanto terrestre como aérea, proporcionan unos resultados muy satisfactorios. Hay que tener en cuenta que la delimitación de áreas anómalas y sus valores positivos correspondientes lo que indican es el contenido en magnetita, pero no indican de forma clara sobre el volumen de ilmenita por lo que es necesaria la realización de una investigación detallada sobre el

- 12 -
área. Esta consistirá principalmente en sondeos, calicatas y labores mineras complementarias con sus análisis y ensayos correspondientes que permitan su delimitación, así como una estimación de leyes y tonelajes que indiquen la viabilidad o no de la explotación.

En el caso de los yacimientos secundarios se comienza por delimitar áreas favorables mediante un reconocimiento fotogeológico, bien por el método clásico o por imágenes de satélite, realizando una cartografía geológica que pueda indicar la procedencia de las arenas y la situación de antiguas líneas de costa o depresiones en las que se han acumulado los minerales pesados.

Por las características de los depósitos, las técnicas mineralométricas, prospección a la batea, es la más utilizada y que mejores resultados da. Por último y mediante calicatas y sondeos cortos se llevan a cabo desmuestres que permiten evaluar la potencialidad del depósito.
2. EL TITANIO EN EL MUNDO
2.1. RECURSOS Y RESERVAS

Aún cuando, como ya se ha señalado en el apartado correspon-
diente de las generalidades, los minerales considerados como menas
de titanio son muy variados, desde un punto de vista práctico, con
las salvedades que se indican, los recursos mundiales se clasifi-
can en dos únicas categorías, ilmenita y rutilo, recogiéndose en
en el cuadro n° 2 en miles de toneladas, y en el cuadro n° 3 en %.

Por continentes, los recursos demostrados de ilmenita más
importantes se encuentran en Asia (31,37% del mundo), seguida de
Europa, América del Norte y África.

Sin embargo, por países, la República de África del Sur se
encuentra en primer lugar, seguida de Noruega, China, India y Ca-
nadá.

En lo que respecta a las reservas de rutilo, la proporción
varía totalmente y se observa que en un único país, Brasil, se
encuentran el 71,5% de las reservas mundiales de este producto. El
segundo y tercer lugar lo ocupan Australia e India.

Estas consideraciones hacen variar el orden de continentes y
países en lo que a reservas totales de titanio se refiere, ocu-
pando el primer lugar Brasil, seguido de África del Sur, India,
Noruega, Australia y China.

Cuando lo que se considera es la Base de Reservas, teniendo
en cuenta la suma total de titanio contenido, sigue siendo Brasil
el país más importante, ocupando el segundo lugar Canadá, con im-
portantes yacimientos de ilmenita, seguido de Australia, África
del Sur y Noruega.

Por último, hay que destacar que en lo que a procedencia del
titanio se refiere, tanto en las cifras de reservas como en las de
Base de Reservas, alrededor del 75% procede de yacimientos de
RECURSOS MUNDIALES DE TITANIO

<table>
<thead>
<tr>
<th></th>
<th>RESERVAS</th>
<th></th>
<th>BASE DE RESERVAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILMENITA</td>
<td>RUTILO(2)</td>
<td>TOTAL</td>
<td>ILMENITA(1)</td>
</tr>
<tr>
<td>AMERICA DEL NORTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td>17.716</td>
<td>17.716</td>
<td>47.242</td>
<td>47.242</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25.491</td>
<td>197</td>
<td>25.688</td>
<td>68.894</td>
</tr>
<tr>
<td>EUROPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>984</td>
<td>984</td>
<td>984</td>
<td>984</td>
</tr>
<tr>
<td>ITALIA</td>
<td></td>
<td></td>
<td>8.267</td>
<td>8.267</td>
</tr>
<tr>
<td>NORUEGA</td>
<td>20.668</td>
<td></td>
<td>20.496</td>
<td>32.479</td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>3.937</td>
<td>1.575</td>
<td>5.512</td>
<td>7.874</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25.594</td>
<td>1.575</td>
<td>27.164</td>
<td>41.337</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGIPTO</td>
<td></td>
<td></td>
<td>984</td>
<td>984</td>
</tr>
<tr>
<td>SIERRA LEONA</td>
<td>1.378</td>
<td>1.378</td>
<td>1.378</td>
<td>1.378</td>
</tr>
<tr>
<td>AFRICA DEL SUR, P.P.</td>
<td>24.605</td>
<td>2.362</td>
<td>26.967</td>
<td>30.516</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.605</td>
<td>3.740</td>
<td>28.345</td>
<td>31.494</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALASIA</td>
<td></td>
<td>6.911</td>
<td>6.911</td>
<td>6.911</td>
</tr>
<tr>
<td>SRI LANKA</td>
<td>2.461</td>
<td>492</td>
<td>2.953</td>
<td>2.461</td>
</tr>
<tr>
<td>TOTAL</td>
<td>41.829</td>
<td>3.346</td>
<td>45.175</td>
<td>49.309</td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>14.763</td>
<td>5.610</td>
<td>20.373</td>
<td>28.542</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14.763</td>
<td>5.610</td>
<td>20.373</td>
<td>28.542</td>
</tr>
<tr>
<td>AMERICA DEL SUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRASIL</td>
<td>1.083</td>
<td>36.415</td>
<td>37.498</td>
<td>1.083</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.083</td>
<td>36.415</td>
<td>37.498</td>
<td>1.083</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>133.360</td>
<td>50.883</td>
<td>184.243</td>
<td>220.659</td>
</tr>
</tbody>
</table>

UNIDAD: Miles de t de titanio contenido

FUENTE: Elaboración propia a partir de "Mineral Facts and Problems 1985"

(1) : Ilmenita y Perouskita (6.000.000 t en EE.UU.)
(2) : Rutilo y Anatasa en Brasil
(3) : Dentro de los recursos mundiales se consideran las reservas y las reservas base, entendiéndose por reservas los recursos económicos demostrados, mientras que la base de reservas comprende las reservas, recursos marginales y parte de los recursos subeconómicos.
RECURSOS MUNDIALES DE TITANIO (%)

<table>
<thead>
<tr>
<th>Región</th>
<th>Reservas</th>
<th>Base de Reservas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ilmenita</td>
<td>Rutilo</td>
</tr>
<tr>
<td>AMÉRICA DEL NORTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td>13.28</td>
<td>9.62</td>
</tr>
<tr>
<td>EE.UU.</td>
<td>5.63</td>
<td>0.39</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19.11</td>
<td>0.39</td>
</tr>
<tr>
<td>EUROPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>0.74</td>
<td>0.53</td>
</tr>
<tr>
<td>ITALIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORUEGA</td>
<td>15.50</td>
<td>11.22</td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>2.95</td>
<td>2.99</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19.19</td>
<td>3.10</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGIPTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIERRA LEONA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFRICA DEL SUR, P.P.</td>
<td>18.45</td>
<td>4.63</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18.45</td>
<td>7.34</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHINA</td>
<td>14.76</td>
<td>10.68</td>
</tr>
<tr>
<td>INDIA</td>
<td>14.76</td>
<td>5.81</td>
</tr>
<tr>
<td>MALASIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI LANKA</td>
<td>1.85</td>
<td>1.60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>31.37</td>
<td>6.58</td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>11.07</td>
<td>11.03</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.07</td>
<td>11.03</td>
</tr>
<tr>
<td>AMÉRICA DEL SUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRASIL</td>
<td>0.81</td>
<td>71.56</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.81</td>
<td>71.56</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia a partir de datos del cuadro anterior.
Ilmenita y el 25% restante tiene su origen en yacimientos de rutilo y anatasa, estos últimos localizados en Brasil.

En lo que a la suficiencia de estos recursos se refiere, solamente el volumen de reservas conocido en la actualidad garantiza el abastecimiento por cerca de 20 años.

2.2. MINERÍA

Aunque es bien conocida la existencia de pequeñas explotaciones en multitud de países, a la hora de analizar las peculiaridades que, con carácter general, definen la minería del titanio, se suele considerar como fuente de información la situación existente en los países que, por disponer del mayor volumen de reservas (ver apartado 2.1.), suelen disponer de las principales minas y en ellos actúan las empresas mineras más destacadas y con mayor peso que, normalmente, son quienes desarrollan las técnicas de explotación y beneficio que posteriormente son copiadas o empleadas en otros países. Así, los países considerados son: Australia, Canadá, Brasil, Sudáfrica, U.R.S.S., etc.

Desde el punto de vista tecnológico, puede decirse que la mayor parte del titanio recuperado a nivel mundial se obtiene mediante laboreo a cielo abierto, utilizando únicamente la minería subterránea en Finlandia y para la explotación de un gran depósito por el método de "macizos hundidos", cuyos cortes de explotación, con gran maquinaria y fuerte mecanización, permiten una aproximación a los existentes en una corta que también obtenga materiales primarios con métodos de explotación por voladura.

El laboreo de depósitos secundarios, que proporcionan la mayor parte de la producción mundial se realiza por dragado, cuando se trata de arenas de playa o próximas a los ríos, ó por "strapper", cuando las arenas se encuentran suficientemente secas. En este último caso, el método de explotación por "minería de trasferencia" es el auténticamente empleado. En el empleo de
dragas, el sistema varía según la explotación se realice en tierra ó en la plataforma continental marina, siendo, en ambos casos, muy frecuente el empleo de potentes dragas sobre potones flotantes donde se realiza una primera concentración que atiende, fundamentalmente, al cribado y desenlodado del material.

La explotación de yacimientos primarios ó magmáticos se realiza, como ya se ha señalado, fundamentalmente mediante cortas a cielo abierto, requiriéndose, en estas ocasiones, contenidos en TiO₂ que superen el 30%. En las pocas ocasiones en que se conoce un importante depósito profundo solo se realiza la extracción por métodos de minería subterránea cuando la relación estéril/mineral es igual o superior a 4:1, y se permite la aplicación de métodos que muevan grandes cantidades de material -hundimiento de bloques o "block caving", siendo el contenido en TiO₂ superior al 35%.

A continuación, en el cuadro nº 4, se señalan las características de las principales explotaciones de titanio del mundo.

2.3. MINERALURGIA

En el proceso de utilización industrial de las sustancias minerales, el siguiente paso a realizar, tras la explotación minera, es la concentración de la mena con el fin de obtener un producto suficientemente enriquecido que permita su tratamiento posterior y su adecuación a las necesidades de utilización.

En el caso de los minerales de titanio, cuyas futuras aplicaciones industriales, así como el sistema de procesamiento a seguir, están en función de su mayor contenido en TiO₂, así como su mas bajo porcentaje de óxidos de hierro (medidos en Fe₂O₃) y otras impurezas (SiO₂, OZn, etc.), los procesos de recuperación mineralúrgicos seguidos industrialmente dependen, fundamentalmente, del tipo de depósito y de las asociaciones mineralúrgicas presentes en la mena.
<table>
<thead>
<tr>
<th>PAIS</th>
<th>EMPRESA EXPLOTADORA</th>
<th>NOMBRE DE LA MINA</th>
<th>LOCALIZACION</th>
<th>TIPO DE DEPOSITO LEYES/MINERALIZA.</th>
<th>METODO DE LABORIO</th>
<th>CAPACIDAD PRODUCCION (t/a) (cont. en TiO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>Consolidated Rutile Ltd (CRL)</td>
<td>Barseide (E) Gordon (E) Amity (E) Pikeha (P)</td>
<td>North Stradbroke Is. Queensland</td>
<td>Arenas de Playa 2-4 Pesados</td>
<td>Dragado desde pontones flotantes (6.840 t/h)</td>
<td>110.000 R 97% 250.000 I 50-51%</td>
</tr>
<tr>
<td></td>
<td>Mineral Deposits Ltd (MDL)</td>
<td>Stockton (E) Viner Creek (2E) Hawks Nest (P)</td>
<td>Newcastle y Saffton Nueva Gales del Sur</td>
<td>Arenas de Playa</td>
<td>Dragado (2.200 t/h)</td>
<td>50.000 R 95% 15 I 50%</td>
</tr>
<tr>
<td></td>
<td>Associated Minerals Consolidated (MC)</td>
<td>Capel (E y P)</td>
<td>al sur de Perth Western Australia</td>
<td>Arenas secas 4% Pesados</td>
<td>Minería de transfe. 20.000 I.A. 60%</td>
<td>5.000 L 84%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eneabba (E y P) Western Australia</td>
<td>Eneabba 10% Pesados 4:5:1: R:C</td>
<td>Arenas secas</td>
<td>Minería de transfe.</td>
<td>420-460.000 I 60%</td>
</tr>
<tr>
<td></td>
<td>Westralian Sands Ltd</td>
<td>Yoganup Extender (E) Cavel (P) North Camel (P)</td>
<td>Boyanup Western Australia</td>
<td>Arenas secas 6% Pesados</td>
<td>Minería de transfe. 5-4.000 L 90%</td>
<td>3-4.000 L 91%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torrelo (4E y P) North Marorna (E) Bunbury (E)</td>
<td>Cerca Port Stephens Western Australia</td>
<td>Arenas secas</td>
<td>3-4.000 L 91%</td>
<td>1-4.000 L 91%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kirby (E) Kingsclift (E) Dunwich (E)</td>
<td>Rainbow Beach Nueva Gales del Sur</td>
<td>Arenas secas</td>
<td>2 Dragas 12.000 R 96%</td>
<td>12.000 R 96%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arenas secas</td>
<td>1 Minería de trans.</td>
<td>180.000 I 54% 28.000 I.A. 68%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.000 6 80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.000 L 90%</td>
</tr>
<tr>
<td>BRASIL</td>
<td>Compañía Vale do Rio Doce (CVRD)</td>
<td>Tapira (E) Araxa (P)</td>
<td>Minas Gerais</td>
<td>Chimeneas Volcánicas en rocas carbonatadas con atanasa 24,3-8,9%</td>
<td>Exploitación por minería de transfe.</td>
<td>400.000 A 90%</td>
</tr>
<tr>
<td></td>
<td>Nuclebrás de Monazit e Associades Ltd</td>
<td>Cumuruxitaba (E) Ponta da Fruta (E) Guarapari (E) Sao Paulo (P)</td>
<td>Bahia Espírito Santo Espírito Santo</td>
<td>Arenas de plaça</td>
<td>5 Scrapers y palas</td>
<td>200.000 I 54%</td>
</tr>
<tr>
<td></td>
<td>Rutilo e Ilmenita do Brasil, S.A.</td>
<td>Mataraca (E y P) Paraiha</td>
<td>Arenas secas</td>
<td>5</td>
<td>Scrapers y palas</td>
<td>34.000 I 54%</td>
</tr>
<tr>
<td>CANADA</td>
<td>QIT Fer et Titane Inc.</td>
<td>Lago Tio (E) Sove (P)</td>
<td>Quebec</td>
<td>Asociac.de ilmenita y hematites con rocas básicas (37-32%)</td>
<td>Corta</td>
<td>850.000 E 75-80%</td>
</tr>
<tr>
<td>PAIS</td>
<td>EMPRESA EXPLOTADORA</td>
<td>NOMBRE DE LA MINA</td>
<td>LOCALIZACION</td>
<td>TIPO DE DEPOSITO LEYES/MINERALIZA.</td>
<td>METODO DE LABORED</td>
<td>CAPACIDAD PRODUCCION (t/a) (cont. en TiO₂)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>CHINA, R.P.</td>
<td>Organizaciones Estatales</td>
<td>Hsinan Dao (E Y P)</td>
<td>Guandong</td>
<td>Arenas de playa</td>
<td>Dragado</td>
<td>100,000 I 54%</td>
</tr>
<tr>
<td>EE.IU.U.</td>
<td>E.I. du Pont de Nemours Inc.</td>
<td>Trail Ridge (E Y P)</td>
<td>Florida</td>
<td>Placeres de río 4% de Pesados</td>
<td>Dragado</td>
<td>200,000 I 55%</td>
</tr>
<tr>
<td>EE.IU.U.</td>
<td>NL Industries</td>
<td>Sanford Lake (E Y P)</td>
<td>Nueva York</td>
<td>Asoc. de Ilmenita en rocas básicas</td>
<td>Corta</td>
<td>200,000 I 45%</td>
</tr>
<tr>
<td>EE.IU.U.</td>
<td>Associated Minerals (USA) Inc.</td>
<td>Green Cove Spring (E Y P)</td>
<td>Florida</td>
<td>Placeres de playa</td>
<td>Dragado</td>
<td>12,000 I A. 65%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25-27,000 R 96%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63,000 I 63%</td>
<td></td>
</tr>
<tr>
<td>EE.IU.U.</td>
<td>Aarco Inc.</td>
<td>Manchester (E Y P)</td>
<td>Lakehurst, Nueva Jersey</td>
<td>Placeres de Lago</td>
<td>Dragas de succión</td>
<td>170,000 I 63%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(cerrada en 1985)</td>
<td></td>
</tr>
<tr>
<td>EE.IU.U.</td>
<td>P.W. Gill brand Co</td>
<td>Soledad</td>
<td>Los Angeles, California</td>
<td>Placeres de Playa</td>
<td>Dragado</td>
<td>20-35,000 I 55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>empresa en 1987</td>
<td></td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>Rautaruukki Oy</td>
<td>Otanmäki</td>
<td>Al norte del país</td>
<td>Asociado a rocas básicas Ilmenita-Magnetita</td>
<td>Subterráneo</td>
<td>150,000 I 44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Macizos hundidos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indian Rare Earth Ltd.</td>
<td>Chavara (E Y P)</td>
<td>Kerala</td>
<td>Placeres de playa</td>
<td>Dragado</td>
<td>150,000 I 55-60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manavalakurichi (E Y P)</td>
<td>Kanavakumari</td>
<td></td>
<td></td>
<td>7-10,000 R 95-96%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orissa (E Y P)</td>
<td>Orissa</td>
<td>Placeres fáciles</td>
<td>Scrapper</td>
<td>200,000 I 55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000 R 96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kerala Minerals & Metals Ltd.</td>
<td>Chavara (E Y P)</td>
<td>Kerala</td>
<td>Placeres de playa</td>
<td>Dragado</td>
<td>24,000 I 58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000 R 96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dhrangadhra Chemical Works Ltd.</td>
<td>Quilon (E Y P)</td>
<td>Quilon</td>
<td>Placeres de playa</td>
<td>Dragado</td>
<td>50,000 I 50% que se transforman en rutilo sintético</td>
</tr>
<tr>
<td>MALASIA</td>
<td>Malaya Mining Corp. Berhad (MMC)</td>
<td>Perak (E Y P)</td>
<td>Oeste de Malasia</td>
<td>Placeres Ilmenita subproducto del estaño</td>
<td>Dragado</td>
<td>150,000 I 54-56%</td>
</tr>
<tr>
<td></td>
<td>Beh Minerals Sdn Bhd.</td>
<td>Lahat (E Y P)</td>
<td>Perak</td>
<td>Placeres Ilmenita subproducto del estaño</td>
<td>Dragado</td>
<td>10,000 I 56%</td>
</tr>
<tr>
<td>PAIS EMPRESA EXPLORADORA</td>
<td>NOMBRE DE LA MINA</td>
<td>LOCALIZACION</td>
<td>TIPO DE DEPOSITO LEYES/MINERALIZA.</td>
<td>METODO DE LABOREO</td>
<td>CAPACIDAD PRODUCCION (t/a) (cont. en TiO2)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>NORUEGA</td>
<td>Titania A/S</td>
<td>Hauge i Dalane</td>
<td>Asociada a rocas básicas Ilmenita-Magnetita</td>
<td>Corta</td>
<td>1.000.000 I 44-45% se tratan 350.000 para produc.escoria de titanio 200.000 I 75%</td>
<td></td>
</tr>
<tr>
<td>SIERRA LEONA</td>
<td>Sierra Rutile Ltd</td>
<td>Movamba District</td>
<td>Mina asociada a rocas básicas Ilmenita-Magnetita</td>
<td>Dragado</td>
<td>100.000 R 95%</td>
<td></td>
</tr>
<tr>
<td>SRI LANKA</td>
<td>Cevlon Mineral Sand Corp.</td>
<td>Kanijasupa</td>
<td>Placeres de playa</td>
<td>Dragado</td>
<td>150.000 I 53-54%</td>
<td></td>
</tr>
<tr>
<td>SUDAFRICA</td>
<td>Richards Bay Min. Tisand (Pty)Ltd / Richards Bay Iron & Titanium (Pty) Ltd</td>
<td>Natal</td>
<td>Placeres de playa</td>
<td>Dragado</td>
<td>440.000 E 85%</td>
<td></td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>Organizaciones Estatales</td>
<td>Irshanskove (P)</td>
<td>Placeres de playa y río</td>
<td>Dragado</td>
<td>450.000 I 55-57%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streminogorskove-E</td>
<td>Placeres de playa y río</td>
<td>Dragado</td>
<td>30.000 R 95-97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zelezogorskove-E</td>
<td>Placeres de playa y río</td>
<td>Dragado</td>
<td>10-20.000 E 85%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarasovskove-E</td>
<td>Placeres de playa y río</td>
<td>Dragado</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkhnodneprsk-P</td>
<td>Placeres de playa y río</td>
<td>Dragado</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Samotkanskov-E</td>
<td>Asociado a rocas básicas Ilmenita-Magnetita</td>
<td>Corta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorkhanskov-E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urales (E y P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kiev (Ucrania)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhitomirs (Ucrania)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia con datos de diversos números del Industrial Minerals, UK.

NOTAS: Materiales obtenidos: I Ilmenita R Rutilo L Leucoxeno IA Ilmenita Alterada A Anatasa E Espumita
Tipos de Instalaciones: E Explotación P Planta D Dragado
Como norma general, y con las salvedades que cada yacimiento en concreto puede imponer, existen tres tipos de esquemas de concentración aplicados a otras tantas clases de criaderos:

1) Concentración de minerales en asociación con magnetitas, procedentes de depósitos primarios.

2) Concentración de minerales en asociación con hematites, procedentes de depósitos primarios.

3) Concentración de minerales de depósitos secundarios.

En todos los casos, como ya se ha señalado en el apartado anterior, 2.2., la mena recuperable estará compuesta fundamentalmente por ilmenita y/o rutilo, existiendo explotaciones que recuperean leucoxeno, ilmenita alterada y anatasa, lo que imprime ciertas características específicas al proceso mineralúrgico.

A continuación se examinan independientemente cada uno de los tres esquemas o procedimientos generales, señalándose las diferencias existentes en función de los tipos de minerales constituyentes de la mena.

2.3.1. CONCENTRACION DE MINERALES PRIMARIOS EN ASOCIACION CON MAGNETITAS

Como norma general los minerales de titanio se concentran aprovechando su mayor peso específico por procedimientos gravimétricos, cuando el tamaño de partícula así lo permite ó por flotación para aumentar la recuperación de finos, empleándose la separación magnética para separar el contenido en magnetita.

En síntesis, una planta de tratamiento de este tipo de minerales consta de tres secciones:

a) Trituración y molienda
b) Separación magnética

c) Concentración.

Las características básicas de los procesos seguidos en cada una de estas etapas son las siguientes:

a) Trituración y molienda

Durante este etapa se pretende alcanzar el "tamaño de liberación de grano" que permite separar el contenido aprovechable de los otros componentes del todo-uno de mina.

Como norma general, el proceso de trituración y molienda pretende situar el material a "tamaño arena", por debajo de 2 mm, siendo normal el empleo de machacadoras y molinos cuyas características dependen del volumen de material a tratar y de la mayor o menor dureza de la roca que acompaña a los minerales.

En general el proceso de realiza con cribados y clasificados intermedios en circuito cerrado.

b) Separación magnética

Las arenas metálicas procedentes de la etapa anterior, son sometidas a la acción de unos separadores magnéticos que eliminan la magnetita contenida en el todo-uno.

El separado magnético suele someterse a una clasificación, normalmente en ciclones, que permite el reciclado de la fracción gruesa, con nueva entrada a los molinos y una nueva separación magnética que permite un apurado de la fracción no magnética en el tratamiento de los finos seguido con las arenas titaníferas procedentes de la primera etapa de separación.
c) Concentración

La fase de concentración propiamente dicha suele efectuarse aprovechando, en las partículas gruesas, cuando las mismas existen, las propiedades de peso específico de estos minerales, aplicándose la flotación para la concentración de finos.

Así, el primer paso suele ser una clasificación, en ciclones, que separen las partículas inferiores a 75 con destino a la flotación.

Los gruesos son sometidos a una concentración gravimétrica, en jigs o mesas clasificadoras, aunque en ocasiones se emplean las espirales Humphreys o el cono concentrador Reichert (más aplicados, estos últimos, a materiales de depósitos secundarios).

De gravimetría, se obtiene un primer concentrado grueso, unos mixtos, que tras su molienda se incorporan al circuito de finos y unas colas que se destinan a balsas y escombreras.

La fracción fina es sometida a un proceso de flotación, normalmente en dos etapas. El producto concentrado es sometido a una nueva separación magnética que obtiene unos mixtos para su reciclado.

El material final, espesado y secado, puede ser sometido, finalmente, a una separación electrostática para recuperar el cirén y el rutilo, cuando el todo-uno contiene estos minerales.

En la fig. nº 2, se incluye, a modo de ejemplo, los esquemas de plantas establecidas para tratar minerales de estas características.
FIG. 2.- ESCHEMA DE TRATAMIENTO DE ILMENITA PRIMARIA
Cuando el mineral básico no es la ilmenita, tal y como sucede en Brasil, donde se recupera anatasa, el proceso sufre algunas variaciones, utilizándose un lixiviado con ácido sulfúrico para obtener un material con un contenido en TiO₂ del 90% o superior. El esquema de esta planta se incluye en la fig. n° 3.

2.3.2. CONCENTRACION DE MINERALES PRIMARIOS EN ASOCIACION CON HEMATITOS

La separación del titanio, cuando se presenta con hematitas, resulta más complicada, siendo necesario recurrir a tratamientos pirometalúrgicos para obtener, como producto final, una escoria con un contenido que oscila entre el 70 y el 72% de TiO₂.

El proceso, en sus fases iniciales, es similar al seguido para los minerales de asociación ilmenita-magnetita siguiendo etapas de molienda y concentración, generalmente gravimétrica. Sin embargo, a causa del crecimiento íntimo de los granos de ilmenita y hematitas, el concentrado tiene un contenido de aproximadamente 37% TiO₂ y un 41% de Fe, por lo que no puede usarse para la producción de pigmentos, y debe emplearse un proceso de fusión, que en su inicio fue puesto a punto por la Quebec Iron and Titanium Corp. de Canadá.

El proceso no utiliza o emplea poco fluidificante, cargando el horno con el concentrado, entre 0 y 10% de cal y entre 8 y 14% de carbón bajo en cenizas. Debido a la naturaleza extremadamente corrosiva de la escoria de titanio es preciso tener un tratamiento muy cuidadoso del fundido, para evitar la corrosión de los refractarios.

En la fig. n° 4, se incluye un diagrama del proceso seguido en la planta canadiense antes citada.
FIG. 3.- TRATAMIENTO DE ANATASA EN BRASIL
FIG. 4. ESQUEMA DE TRATAMIENTO DE ILMENITA-HEMATITES
2.3.3. CONCENTRACIÓN DE MATERIALES SECUNDARIOS

En la práctica, existen dos tipos de depósitos secundarios en explotación para producir minerales de titanio: los de aluviales y los de arenas de playa. Las diferentes características con que se presentan los materiales beneficiosos en uno u otro tipo de depósito hace que los diagramas de flujo de las plantas que recuperen ambos tipos de concentrados presenten algunas diferencias significativas.

Así, en los depósitos aluviales, es difícil obtener buenas recuperaciones con minerales de alta pureza principalmente debido a la mala distribución por tamaños de los granos y a la falta de meteorización de los mismos. Así mismo, suelen tener un recubrimiento de productos orgánicos, arcillas y hierro que obligan a un proceso de atrición previo para su eliminación.

En los depósitos de playa, la distribución de los granos es superior, la meteorización produce granos más redondeados y el recubrimiento no existe, pero su contacto con aguas salinas, obliga, con frecuencia, a un relavado con agua dulce antes del proceso de concentración en seco.

Por lo que respecta a los minerales de playa, puede establecerse que una vez dimensionados y clasificados, no se necesita ninguna nueva clasificación, obteniéndose buenas recuperaciones, aunque en ocasiones se incorpore una separación posterior de finos para optimizar el rendimiento mineralúrgico.

En los minerales de aluvión, puede procederse de dos formas diferentes; con una clasificación previa que separe los gruesos y los envíe a una molienda ó sin clasificación, enviándolos directamente al molino. Un buen ejemplo de la necesidad de clasificación previa se encuentra en las plantas que recuperan rutilo y sus minerales asociados, donde los granos fragmentados de granate y/o estavrolita o cuarzo, cuando son tratados por separación magnética
y electrostática suelen aparecen con los concentrados finos magnéticos, generalmente el rutilo y la casiterita.

En las figuras n° 5 y 6, pueden verse los esquemas generales para el tratamiento de minerales procedentes de ambos tipos de depósitos secundarios. En ellas puede verse como el diagrama comúnmente usado para tratar materiales de playa es, en general, más sencillo que para depósitos aluviales, aún cuando los procesos son significativamente semejantes.

2.4. PROCESOS DE ELABORACION Y TRANSFORMACION

El proceso de transformación de los minerales y concentrados de titanio viene condicionado por el producto final que pretende obtenerse. Partiendo de uno u otro tipo de concentrados, existen, a nivel industrial, multitud de caminos, métodos y técnicas para lograr un material apto para una aplicación concreta. En la fig. n° 7 se incluye un esquema que orienta sobre esta diversidad de posibilidades.

Asimismo, los distintos procesos han dado lugar a la aparición de una serie de productos intermedios con repercusión en el mercado y utilización más o menos directa por la industria demandante.

Si se acepta el titanio metal y sus aleaciones como el producto más elaborado que puede obtenerse a partir de los concentrados de titanio, de acuerdo con la figura anteriormente citada, los productos de transformación y sus procesos se pueden establecer en los siguientes niveles:

a) **Productos de primera transformación**

Son aquellos que se producen, normalmente en la clara ligazón de la industria minera y representan la aparición en mercado
FIG. 6.- ESQUEMA GENERAL DE TRATAMIENTO DE ARENAS DE PLAYA
FIG. 6 - DIAGRAMA GENERAL DE TRATAMIENTO DE ARENAS DE DEPÓSITOS ALUVIALES
FIG 7.- PROCESOS DE UTILIZACIÓN DEL TITANIO
de unos semi-elaborados de características similares a las de algunos concentrados minerales. Los productos de este grupo, con carácter más general, son dos: el rutilo sintético y las escorias titanníferas de los depósitos de titanio-hematites.

b) **Productos semielaborados**

Son aquellos que se producen tras un proceso de transformación química de los concentrados minerales o de los productos de primera transformación.

En este grupo se incluyen, básicamente, dos clases de materiales: el tetracloruro de titanio (TiCl₄) y el óxido de titanio para pigmentos (TiO₂). Estos materiales pueden producirse por dos procesos fundamentales: por cloración o por sulfatación.

c) **Productos elaborados**

Los materiales de este grupo incluyen al titanio metálico y a sus aleaciones, en especial al ferrotitano.

Son el resultado de la industria metalúrgica y, normalmente necesitan la producción de esponja de titanio como primer elemento de transformación, de tal forma que se llega a comercializar la misma como un material vendible más.

A continuación se examinan brevemente los procesos industriales seguidos para obtener cada uno de los productos mencionados.

2.4.1. PRODUCTOS DE PRIMERA TRANSFORMACIÓN

Con frecuencia, los concentrados minerales recuperados por la industria minera deben ser sometidos a un proceso de primera
transformación, ligado a la actividad de beneficio, que los hace más idóneos para su destino final.

En este capítulo debería incluirse, en rigor, el proceso seguido con los concentrados de ilmenita-hematites para la obtención de una escoria de titanio con el 70% de TiO₂. Sin embargo, la práctica tradicional hace que este método de transformación se incluya entre los sistemas de preparación mineralúrgica.

Los minerales procedentes de la transformación de la ilmenita que tienen un contenido en TiO₂ que se aproxima al presente en los concentrados de rutilo reciben el nombre de "rutilo sintético" o ilmenita beneficiada. Estos productos, normalmente fabricados por las propias empresas mineras o sus subsidiarias más directas, son los considerados como productos de primera transformación.

Los procesos industriales seguidos para producir sustitutos del rutilo se clasifican en tres grupos:

- Aquellos en los cuales el hierro es reducido por completo a metal y separado del conjunto física o químicamente.
- Aquellos en los que el hierro es reducido a estado de ferroso y mediante una lixiviación química separado del titanio, y
- Aquellos en que la ilmenita es sometida a una cloración selectiva para separar el hierro y otras impurezas.

Siguiendo uno u otro camino para la producción del rutilo sintético, las plantas industriales existentes en el mundo se han desarrollado de acuerdo con patentes que, dando nombre al proceso, han impuesto su nombre en la terminología del titanio. Así, aun cuando existen muchos procesos, los principales establecidos y empleados son los siguientes:
1.- **Proceso ISK.** Fue desarrollado por la Ishihara Sangyo Kaisha, en 1971, en Japón.

El proceso consiste en una lixiviación con ácido sulfúrico de ilmenita reducida en presencia de óxido de titanio hidratado, que actúa como catalizador incrementando la precipitación de las sales de titanio.

La ilmenita se mezcla con coque y es reducida en horno rotatorio. Después de su enfriado los residuos se separan magnéticamente y la mena reducida es lixiviada.

2.- **Proceso Benilite.** Es el más establecido a nivel mundial y fue desarrollado por la Benilite Corp. of America.

El proceso consiste en una reducción parcial de los óxidos de hierro y un lixiviado posterior con ácido clorhídrico. La ilmenita se reduce a 900°C con coque y es lixiviada en dos etapas a 100°C con ácido clorhídrico al 20%.

3.- **Proceso de Western Titanium.** Este sistema se inició en 1968 por la Western Titanio NL, actual AMA.

El proceso consiste en una oxidación a alta temperatura para formar una pseudo brookita, y la posterior reducción con carbón del hierro, el cual se oxida y mezcla en una corriente de agua y aire para obtener un lodo de hidróxido de hierro, separándose un rutilo sintético de 92% de TiO₂.

2.4.2. PRODUCTOS SEMIELABORADOS

Se denominan así los productos que, partiendo de minerales, naturales o sintéticos, mediante procesos de transformación química, pueden considerarse como básicos para la obtención de productos finales. En este grupo se encuentran dos materiales: el tetracloruro de titanio, TiCl₄, que es la base de la recuperación
de la esponja de titanio y, por tanto, de la metalurgia de este metal, y el óxido de titanio, TiO₂, que es la materia prima para la elaboración de pigmentos y blanqueantes. Este segundo puede obtenerse también, a partir del TiCl₄, por lo que puede, en ocasiones, ser considerado como un producto final.

A continuación se describen brevemente los procesos tecnológicos incluidos en este apartado.

Proceso de cloruración

Este proceso proporciona un producto intermedio fundamental para la obtención del titanio metal y que puede ser utilizado en la fabricación de dióxido de titanio, el tetracloruro de titanio (Cl₄Ti₄).

La materia prima utilizada es el rutilo, aunque el proceso puede aplicarse también a la ilmenita e incluso a escorias de titanio.

El rutilo se combina con cloro gaseoso y coque de petróleo a una temperatura comprendida entre los 850 y 950° C según las reacciones:

\[
\begin{align*}
\text{TiO}_2 + 2\text{Cl}_2 + C & \rightarrow \text{Cl}_4\text{Ti} + \text{CO}_2 \\
\text{TiO}_2 + 2\text{Cl}_2 + C & \rightarrow \text{Cl}_4\text{Ti} + 2\text{CO}
\end{align*}
\]

Estas reacciones son exotérmicas y requieren un cuidadoso control en el seno de los tanques de cloruración donde tienen lugar. El producto obtenido, Cl₄Ti, es una vez condensado, un líquido incoloro, comúnmente denominado "tickle". El Cl₄Ti se somete a sedimentación y filtración con el fin de eliminar el lodo y otros materiales insolubles que lleva en suspensión. Normalmente se necesita un tratamiento de destilación fraccionada posterior, para conseguir el grado de pureza adecuado a la exigencia en
último término relativa a una esponja de titanio exenta de elementos contaminantes.

Las impurezas de eliminación más problemáticas son el oxicloruro y el cloruro de aluminio por ser sus respectivos puntos de ebullición muy próximos al del tetracloruro de titanio. Para eliminar el oxicloruro de vanadio se suele añadir ácido sulfhídrico a 90° C produciéndose un precipitado, donde se deposita todo el vanadio y hierro existentes.

El resto de los cloruros metálicos pasan a sulfuros o cloruros más reducidos y por tener un punto de ebullición más elevado se pueden ya separar con facilidad.

Tras el anterior tratamiento químico, es cuando se procede a la destilación fraccionada. La mezcla sólida de Cl₄Ti e impurezas asociadas, se somete a una nueva destilación en la que el tetracloruro de titanio se volatiliza totalmente, separándose de los elementos sólidos. Una vez condensados los vapores de Cl₄Ti se recoge el producto líquido purificado procediéndose a su almacenamiento.

Los tanques de cloruración pueden ser de lecho estático o fluido, si bien el uso de este último tipo se encuentra más extendido. Así, todas las instalaciones industriales de Estados Unidos son de lecho fluido. En los cloruradores de lecho estático la carga ha de ser previamente briqueteada o sinterizada, mientras que en los de base fluida son el propio mineral y el coque los constituyentes del lecho. Para el briqueteado o sinterizado de la carga, se cuece una mezcla bien amasada y en las debidas proporciones de rutilo, alquitrán y coque dentro de un horno de túnel. El producto sinterizado se almacena previa fragmentación.

El clorador de lecho estático se calienta eléctricamente mediante unos electrodos situados en el fondo, recubiertos por un lecho de grafito que actúa como resistencia eléctrica. Nada más
alcanzar los 800° C de temperatura y dada la naturaleza exotérmica de la reacción se puede interrumpir el suministro de calor, pues el proceso una vez iniciado no se detiene. El consumo de energía es aproximadamente de 2,2 kH por kilo de titanio producido.

El mayor inconveniente que presenta el clorador de base estática consiste en que el material que no reacciona va acumulándose en el fondo y ha de ser interrumpido el proceso para realizar su limpieza.

En el clorador de base fluida no existe el problema anterior pues el material que no se combina va rebosando continuamente. Además, como ya se indicó anteriormente, el rutilo y el coque forman directamente el lecho de base sin tener que aglomerarse previamente. En este caso la unidad se calienta en un principio mediante la combustión de coque, manteniéndose la temperatura durante el periodo inicial de la reacción por inyección de gases de combustión y aire, desecados en las proporciones adecuadas.

Ya se estableció que el rutilo constituye la materia prima por excelencia del proceso para la obtención del Cl₄Ti, producto intermedio en la obtención de titanio metal. No obstante, también es posible la cloruración de la ilmenita, TiO₃Fe, si bien el hierro presente consume gran cantidad de cloro provocando la formación de Cl₃Fe, producto carente de interés económico. Otro inconveniente que se advierte son los mayores volúmenes y unidades con que es preciso operar para producir la misma cantidad de Cl₄Ti que se obtendría partiendo de rutilo. Además, en la cloruración de la ilmenita se producen continuas obstrucciones en el sistema de condensación debido a la formación de cloruros ferroso y férrico; cuando el cloruro férrico y el tetracloruro de titanio se condensan juntos, se forma un lodo espeso que dificulta el funcionamiento y retrasa todo el proceso.

La cloruración de las escorias de titanio procedentes del tratamiento de minerales de ilmenita-hematites presenta igualmente
considerables problemas, ya que el magnesio y el calcio presentes en la escoria forman una pasta que colapsa la reacción principal. Por otra parte, el consumo de cloro es bastante elevado y se obtiene menos cantidad de Cl₄Ti que utilizando el rutilo como materia prima mineral.

En cualquier caso, el mejor tipo de escoria para cloruración es la que se obtiene a partir de ilmenita de alta ley, que ha requerido una mínima adición de fundentes para su tratamiento.

El Cl₄Ti puede emplearse, como ya se ha dicho, indistintamente para la obtención de TiO₂, pigmento de Ti, o para la obtención de esponja de titanio y consecuentemente titanio metal, mediante una pequeña variación de las especificaciones.

En la producción de pigmento, TiO₂, el Cl₄Ti se oxida con aire u oxígeno y el producto, TiO₂, de tamaño de grano fino, se calcina entre 500 y 600° C para eliminar el cloro residual y todo el ácido clorhídrico que pueda haberse formado durante la reacción. El cloruro de aluminio se añade al Cl₄Ti para asegurar que virtualmente todo el titanio es oxidado en la forma cristalina, rutilo.

La recuperación del dióxido de titanio en las plantas de obtención de pigmento, TiO₂, es de aproximadamente un 89%, mediante el proceso de cloruración. No obstante, la obtención de TiO₂ se realiza preferentemente por el proceso de sulfatación, procedimiento que es objeto de análisis en el siguiente apartado.

En la figura n° 8 se incluye un esquema completo de este proceso de sulfatación.

Proceso de sulfatación

La producción comercial de dióxido de titanio, TiO₂, es realizada prioritariamente por el proceso de sulfatación mediante el
FIG. 8.- ESQUEMA DEL PROCESO DE CLORACION PARA OBTENCION DE BIOXIDO DE TITANIO
cual la materia prima, ilmenita o escoria de titanio de diversa procedencia, reacciona con ácido sulfúrico concentrado al 90%. Una parte importantes del sulfato de hierro existente cristaliza y se elimina, precipitando hidróxido de titanio mediante un proceso de hidrólisis.

A continuación se comentan más detalladamente las etapas principales del proceso de sulfatación.

En primer lugar es necesaria una etapa de molienda en la que en el caso de la ilmenita ha de lograrse que al menos el 95% de la materia prima presente un tamaño inferior a 44 μ.

La segunda etapa consiste en la digestión del concentrado en una serie de tanques al efecto, a los que se incorpora SO₄H₂. La reacción se lleva a cabo bajo presión y a un temperatura que puede llegar a los 110° C, aunque dado el fuerte carácter exotérmico de la misma una vez iniciada se desarrolla espontáneamente, haciendo innecesaria una nueva aportación de calor.

El siguiente paso lo constituye la sedimentación y reducción con chatarra de hierro. La mezcla pastosa obtenida de la reacción anterior una vez tratada con agentes coagulantes, normalmente sulfuro sódico, se bombea a los tanques de sedimentación. Una vez que se ha decantado la solución mediante un filtro centrifugador, pasa a los tanques de reducción donde por aportación de chatarra de hierro se consigue que todo el hierro presente se reduzca a estado ferroso.

En la disolución se encuentran SO₄TiO. 2H₂O y SO₄Fe. 7H₂O principalmente. Más del 60% de este último compuesto se cristaliza al enfriar la solución en vacío hasta una temperatura de 10° C. Mediante una centrifugación y un lavado posterior se logra, centrifugando de nuevo, recuperar parte de la solución de titanio existente. La parte de solución restante se clarifica mediante
distintos procedimientos de filtrado, con arenas y diatomeas, principalmente.

Se realiza a continuación la etapa de hidrólisis. La disolución con un contenido aproximado de 140-150 gr/l de TiO₂, 30 gr/l de Fe y 65-70 gr/l de SO₄H₂, se concentra en un evaporador de plomo, pasando el concentrado a un tanque donde por hidrólisis precipita el TiO (OH). En función del tipo de pigmento a cristalizar se añade previamente al producto precipitado, rutilo o anatasa, compuesto este último de igual composición química que el rutilo, TiO₂, pero de características físicas netamente diferentes. Durante la hidrólisis es preciso mantener un control muy riguroso de los distintos parámetros que intervienen en la reacción, tales como temperatura, tiempo, concentración del SO₄H₂ y del SO₄Ti.

El pigmento precipitado se bombea a los tanques de enfriamiento y posteriormente al sistema de filtros, quedando el sulfato de hierro y otros materiales solubles separados mediante filtración y lavado. Las últimas cantidades de hierro son eliminadas convirtiendo en pasta el pigmento existente en los filtros, reduciendo el óxido férrico que pueda quedar con sulfato de titanio y filtrando y lavando de nuevo.

Con el objeto de que en la siguiente etapa, la de calcinación, pueda evitarse la sinterización, se añade previamente un agente que será carbonato sódico o carbonato potásico, según el pigmento haya cristalizado en forma de anatasa o de rutilo. También en este último caso se puede emplear además de carbonato sódico sulfatos de cinc o litio.

Una vez formada la pasta, se conduce a un horno rotatorio para su calcinación. Las temperaturas de entrada y salida de aproximadamente 360 y 980° C y el periodo de calcinación oscila entre 8 y 12 h. Después de obtener el producto calcinado, se pulveriza y enfriía por inmersión en agua. El barro formado se trata con Na OH bombeándose a un hidroseparador. Los finos rebosan por
la parte superior y pasan a un espesador en el que son coagulados con cloruro cálcico. Este material ya espeso se filtra a presión, se deshidrata y se seca. y, por último, se prepara para su utilización mediante molienda. Los gruesos se tratan directamente en un molino de bolas.

La recuperación de dióxido de titanio en las plantas de obtención de pigmento de TiO₂, mediante el proceso de sulfatación, es de aproximadamente un 80%.

En la figura nº 9 se especifica el diagrama general de este proceso.

2.4.3. PROCESOS FINALES. METALURGIA DEL TITANIO

La producción industrial del titanio metal se realiza fundamentalmente a partir del tetracloruro de titanio mediante tres procesos que se diferencian por su agente reductor. Mediante estos procedimientos se obtiene la denominada esponja de titanio, que una vez purificada y compactada por sucesivas fusiones, dará lugar al lingote de titanio metal.

Los procesos más comunes seguidos por la industria se describen a continuación.

Proceso Kroel

Consiste en la reducción del tetracloruro con magnesio. Se trata de una reacción fuertemente exotérmica.

Las principales características de este proceso se describen a continuación.

La reacción tiene lugar en un reactor de acero inoxidable, donde se ha introducido el magnesio en lingotes, cerrado con una
Fig. 9.- Esquema del proceso de sulfatación para obtención de bioxido de titanio
tapa provista de tubos para dar entrada al tetracloruro y al gas inerte (helio, argón) que va a formar la atmósfera.

Para comenzar la operación, una vez cargado, se extrae el aire del reactor, se hace el vacío y se da entrada al gas, alcanzando la presión atmosférica. Se calienta el reactor hasta que comience la fusión del magnesio. Se añade el cloruro de titanio por uno de los tubos cuando la temperatura alcance los 750 ó 800° C. La temperatura aumenta rápidamente por lo que se regula la entrada del Cl₄Ti para mantenerla entre 800 y 900° C. El cloruro de magnesio producido es evacuado en sucesivas coladas a partir del momento en que se ha introducido un 60% de Cl₄Ti.

A continuación el reactor se enfria y se abre en un recinto donde la atmósfera esté muy seca. Las escamas de titanio obtenidas se recogen en un recipiente calentándose en un horno al vacío, hasta una temperatura de 910° C ó más, con el fin de volatilizar el magnesio residual y el cloruro de magnesio, obteniéndose una esponja de titanio que se puede lixiviar con Cl₂H para una mejor depuración.

La Oregon Metallurgical Corporation (OREMET) ha realizado una importante mejora mediante la aplicación de un gas inerte de lavado y utilizando un reactor horizontal, obteniéndose una serie de ventajas. Las cargas son mayores, el gas elimina el magnesio y el cloruro de magnesio residuales, pudiendo recuperarse el magnesio y el cloro para volver a utilizarlos.

Proceso Nilson-Pettersson ó Hunter

Químicamente tiene el mismo fundamento que el proceso Kroel, variando únicamente el agente reductor que en este caso es el sodio. Es una reacción intensamente exotérmica.

Originalmente se desarrollaba en una etapa, pero investigaciones efectuadas por el U.S. Bureau of Mines han detectado que se
trata de una sucesión de reacciones. La reacción conjunta, globalmente considerada, puede suponerse escindida en dos etapas principales. En la Fig. 10 se muestra de forma esquemática el proceso.

En la primera etapa del proceso de reducción, el Cl₄Ti se introduce en un reactor continuo a 232° C, donde se combina con sodio metálico para formar dicloruro de titanio y cloruro sódico, que se descarga en fase fundida en una cuba de sinterización, a la cual se añade más sodio y se efectúa la segunda parte de la reacción, en la que reacciona el dicloruro de titanio y el sodio.

La segunda etapa se realiza en un horno de sinterización a temperatura inferior a 1.038° C. El titanio obtenido se presenta en forma de escamas que constituyen la esponja. En la Fig. 11 se presenta el esquema de flujo de la ICI MOND DIVISION para la obtención del titanio metal según el procedimiento Nilson-Petterson.

Proceso electrolítico

Ha sido desarrollado por la Titanium Metal Corporation of America (TIMET). Está basado en la electrolisis de una mezcla de Cl₄Ti con un electrolito de sales fundidas, mediante el cual se deposita el metal en el cátodo, mientras el cloro se libera en el ánodo. El diagrama de flujo de este proceso se indica en el Fig. 12.

La esponja purificada del Cl₄Ti se introduce en un cátodo tipo cesta de metal perforado, rodeado por una serie de ánodos de grafito en forma de barras cilíndricas alojadas en una celda refractaria y hermética llena de gas.

El titanio metal se va depositando en las paredes del cátodo formando una estructura cristalina porosa (esponja). Su recuperación se realiza eliminando el electrolito en una solución de ácido diluido.
PROCESO DE REDUCCION POR SODIO EN DOS ETAPAS

FIGURA 10.
Diagrama de flujo para la obtención del titanio metal (ICI Mond Division)

1.
- \(\text{TiO}_2 \) (Rutilo)
 - Purificación por tratamiento del mineral
 - Dioxido de titanio
 - Reacción 1: \(\text{TiO}_2 + \text{CO} + \text{Cloro} \)
 - Cl\(_4\)Ti impuro
 - Purificación por destilación fraccionada
 - Cl\(_4\)Ti puro (esponja purificada)
 - Reacción 2: Cl\(_4\)Ti + Na
 - Mezcla de titanio impuro sal
 - Purificación por filtración
 - Granulos de titanio metal

Figura 11.
DIAGRAMA DE FLUJO DEL PROCESO ELECTROLÍTICO PARA OBTENCIÓN DEL TI METAL

CELDA ELECTROLÍTICA

CAMARA DE INTERCAMBIO DEL CATODO

ENFRIAMIENTO Y CARGA DEL CATODO

EXTRACCIÓN DEL CATODO

TRITURACIÓN DE LA ESPONJA

Cl₂Ti Argón ClNa

Argón

H₂O Argón

Cl₂Ti Cl₂ Ti

RECUPERACIÓN DE Cl₂

LIMPIEZA DEL CATODO

LIxivIACIÓN DE LA ESPONJA

RECUPERACIÓN DE SALTOS

SECADO DE LA ESPONJA

ALMACENAMIENTO DE LA ESPONJA

RECUPERACIÓN DE SALTOS

ALMACENAJE DEL CATODO

AGREGACIÓN DEL CATODO

ENFRIAMIENTO RECICLADO DE AGUA

RECUPERACIÓN DE CL₂ Ti

_min:300

_macro:300

_label:12

_diagram:300

_flow:300
Otros procesos

En los últimos tiempos se han desarrollado una serie de procesos de reducción directa que a continuación se resumen.

- Proceso con halogenuros: Es el de mayor interés, ya que por cloruración del material de partida se origina un producto de mayor actividad que los ð-zñ-ü. Se puede realizar mediante tres tipos de reducción. Gaseosa, mediante hidrógeno, monóxido de carbono o hidrocarburos gaseosos. Asubhalogenuros, es decir, reducir el tetracloruro de titanio mediante hidrógeno en etapas. Metalotérmica, reducción del Cl4Ti con sodio.

- Procesos sin halogenuros. Contempla la posibilidad de utilizar la ilmenita o el rutilo directamente o convertirlos en compuestos no halogenados, tales como carburo de titanio, nitruro, etc. Las diversas reducciones son las siguientes: Gaseoso, empleándose hidrógeno. Metalotérmico, es una reducción directa del dióxido de titanio con un agente metálico para obtener una aleación de titanio, que es refinada químicamente para obtener el titanio puro, y una escoria del óxido de metal reducido. Carbotérmico, utilizando carbón para reducir el TiO2. Sulfuración, conversión del dióxido en sulfuro y posterior tratamiento con magnesio para obtener titanio puro.

- Procesos electrolíticos. Se han hecho experiencias con electrolitos acuosos y con soluciones de compuestos de titanio en disolventes orgánicos, pero se presentan problemas para la electrodeposición del metal. Los mejores resultados se han obtenido utilizando Cl4Ti como material de partida.

Procesos para la obtención del lingote

Existen dos procedimientos fundamentales para la consecución del lingote a partir de una esponja de titanio pura y acabada, la
fusión por arco y la fusión por inducción. Otro procedimiento menos extendido y bastante específico es el pulvimetalúrgico.

a) Fusión por arco al vacío

Es el de mayor utilización ya que prácticamente elimina la contaminación que lleve el titanio.

En primer lugar se compacta la esponja de titanio con virutas de metal y otros constituyentes, cuando se quiere alear. Las barras así formadas se sueldan por arco bajo atmósfera inerte, constituyendo un electrodo continuo, que según se va consumiendo por fusión es vertido a crisoles de cobre, cuyas paredes están refrigeradas por agua. De esta forma se obtiene un lingote de 1ª fusión. Este doble proceso de fundición proporciona al lingote de titanio metal o de aleación unas características de homogeneidad, acabado y consistencia, superiores a las obtenidas en el caso de fusión simple.

b) Fusión por inducción

Tiene mayores problemas que el anterior procedimiento en lo que a contaminación del lingote se refiere. Para paliar de alguna forma este inconveniente, la fusión de la esponja se realiza en atmósfera inerte, empleando crisoles de grafito de elevada densidad.

2.5. DATOS ECONÓMICOS

Al igual que sucede con la mayoría de las sustancias minerales que presentan un carácter dual, y que pueden ser consideradas bien como minerales industriales, bien como base para la recuperación de un metal, la minería del titanio presenta una serie de peculiaridades en función de las características de sus productos vendibles.
Por tanto, como se ha estudiado en el apartado anterior, existen transformaciones más o menos ligadas a la minería (escoria y rutilo sintético), así como a la elaboración de productos intermedios, por uno u otro procedimiento, que prefieren, como materia prima, distintos materiales.

 Debido a esta situación, la recopilación y estudio de los datos económicos que, a nivel mundial, establecen la evolución de la demanda de minerales de titanio y permiten extrapolar previsiones y tendencias, resulta muy dificultoso y a menudo no suficientemente satisfactorio.

 Sin embargo, a continuación se examina la información de carácter económico que, en relación con los distintos escalones de esta industria, permite extraer una serie de conclusiones, a corto y medio plazo, cuyo interés es significativo, especialmente a la hora de valorar la evolución previsible de los recursos y las reservas de estos minerales.

2.5.1. PRODUCCION MINERA

La oferta mundial de titanio proviene, en una proporción muy elevada situada alrededor del 85% de la ilmenita y el resto en su casi totalidad del rutilo, quedando pequeñas cantidades para la anatasa, perouskita y leucoxeno.

 En los cuadros nº 5 y 6 puede observarse la producción de concentrados de titanio proveniente de ambos minerales.

 Las cifras totales de ilmenita, recogidas en la serie estadística correspondiente a los años comprendidos entre 1970 y 1985, muestran dos variaciones importantes en una tendencia casi lineal y estable; el descenso acusado entre los años 1974 y 1978 y el incremento surgido entre 1978 y 1983.
PRODUCCION MUNDIAL DE ILMENITA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>151</td>
<td>140</td>
<td>150</td>
<td>159</td>
<td>152</td>
<td>123</td>
<td>123</td>
<td>125</td>
<td>132</td>
<td>132</td>
<td>150</td>
<td>162</td>
<td>168</td>
<td>164</td>
<td>167</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORUEGA</td>
<td>579</td>
<td>642</td>
<td>608</td>
<td>753</td>
<td>848</td>
<td>527</td>
<td>767</td>
<td>829</td>
<td>767</td>
<td>820</td>
<td>828</td>
<td>660</td>
<td>552</td>
<td>556</td>
<td>462</td>
<td>735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>0.238</td>
<td>0.890</td>
<td>0.752</td>
<td>0.610</td>
<td>0.274</td>
<td>0.212</td>
<td>0.367</td>
<td>0.229</td>
<td>0.291</td>
<td>0.268</td>
<td>0.232</td>
<td>0.334</td>
<td>0.472</td>
<td>0.247</td>
<td>0.164</td>
<td>0.227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPAÑA</td>
<td>27</td>
<td>24</td>
<td>22</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>U.R.S.S. (4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>307</td>
<td>327</td>
<td>380</td>
<td>400</td>
<td>410</td>
<td>420</td>
<td>430</td>
<td>430</td>
<td>435</td>
<td>440</td>
<td>445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>757</td>
<td>807</td>
<td>781</td>
<td>918</td>
<td>1.307</td>
<td>977</td>
<td>1.270</td>
<td>1.354</td>
<td>1.309</td>
<td>1.362</td>
<td>1.398</td>
<td>1.252</td>
<td>1.150</td>
<td>1.155</td>
<td>1.259</td>
<td>1.233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>CANADA (1)</td>
<td>1.892</td>
<td>1.893</td>
<td>2.049</td>
<td>2.082</td>
<td>844</td>
<td>750</td>
<td>814</td>
<td>1.442</td>
<td>1.810</td>
<td>1.004</td>
<td>1.853</td>
<td>2.068</td>
<td>1.735</td>
<td>940</td>
<td>1.160</td>
<td>1.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE.UU. (4) (2)</td>
<td>787</td>
<td>620</td>
<td>615</td>
<td>704</td>
<td>675</td>
<td>651</td>
<td>592</td>
<td>579</td>
<td>535</td>
<td>580</td>
<td>505</td>
<td>492</td>
<td>239</td>
<td>235</td>
<td>250</td>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAZIL</td>
<td>21</td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>15</td>
<td>13</td>
<td>20</td>
<td>13</td>
<td>17</td>
<td>20</td>
<td>13</td>
<td>30</td>
<td>41</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.700</td>
<td>2.524</td>
<td>2.668</td>
<td>2.792</td>
<td>1.526</td>
<td>1.406</td>
<td>1.421</td>
<td>2.039</td>
<td>2.365</td>
<td>1.597</td>
<td>2.375</td>
<td>2.252</td>
<td>1.987</td>
<td>1.205</td>
<td>1.451</td>
<td>1.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>INDIA (4)</td>
<td>79</td>
<td>91</td>
<td>91</td>
<td>77</td>
<td>132</td>
<td>82</td>
<td>175</td>
<td>154</td>
<td>173</td>
<td>163</td>
<td>185</td>
<td>189</td>
<td>177</td>
<td>164</td>
<td>140</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPON (4)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MALASIA</td>
<td>223</td>
<td>156</td>
<td>154</td>
<td>185</td>
<td>154</td>
<td>112</td>
<td>180</td>
<td>154</td>
<td>166</td>
<td>212</td>
<td>199</td>
<td>177</td>
<td>77</td>
<td>207</td>
<td>224</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI LANKA</td>
<td>85</td>
<td>93</td>
<td>83</td>
<td>93</td>
<td>81</td>
<td>64</td>
<td>65</td>
<td>34</td>
<td>55</td>
<td>34</td>
<td>80</td>
<td>68</td>
<td>80</td>
<td>102</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHINA (4)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>390</td>
<td>342</td>
<td>330</td>
<td>357</td>
<td>368</td>
<td>258</td>
<td>420</td>
<td>342</td>
<td>375</td>
<td>430</td>
<td>418</td>
<td>581</td>
<td>457</td>
<td>561</td>
<td>606</td>
<td>674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA (4)</td>
<td>886</td>
<td>814</td>
<td>707</td>
<td>720</td>
<td>817</td>
<td>991</td>
<td>959</td>
<td>1.033</td>
<td>1.255</td>
<td>1.181</td>
<td>1.385</td>
<td>1.321</td>
<td>1.149</td>
<td>893</td>
<td>1.493</td>
<td>1.317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
</tr>
<tr>
<td>SUDAFRICA (3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>154</td>
<td>487</td>
<td>224</td>
<td>218</td>
<td>188</td>
<td>274</td>
<td>256</td>
<td>257</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Miles de toneladas de titanio concentrado

FUENTE: World Mineral Statistics

(1): Excepto pequeñas cantidades de ilmenita, su producción corresponde a slag
(2): Las cifras comprenden tanto minerales de ilmenita, como de rutilo y escoria
(3): Titanio contenido en minerales de titanio y slag
(4): Parte de la ilmenita considerada da lugar a producción de rutilo sintético.
PRODUCCIÓN MUNDIAL DE RUTILO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td></td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>BRASIL</td>
<td>1</td>
<td>316</td>
<td>178</td>
<td>146</td>
<td>104</td>
<td>51</td>
<td>128</td>
<td>365</td>
<td>439</td>
<td>428</td>
<td>205</td>
<td>225</td>
<td>463</td>
<td>412</td>
<td>713</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>370.867</td>
<td>374.705</td>
<td>313.139</td>
<td>335.231</td>
<td>318.702</td>
<td>348.350</td>
<td>389.750</td>
<td>325.281</td>
<td>257.075</td>
<td>274.533</td>
<td>311.744</td>
<td>230.817</td>
<td>220.697</td>
<td>163.374</td>
<td>170.424</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
</tr>
<tr>
<td>SIERRA LEONA</td>
<td>44.056</td>
<td>11.932</td>
<td></td>
</tr>
<tr>
<td>SUDAFRICA (#)</td>
<td>18.000</td>
<td>42.000</td>
<td>42.000</td>
<td>49.800</td>
<td>54.000</td>
<td>54.400</td>
<td>72.400</td>
<td>72.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: T de titanio contenido
FUENTE: World Mineral Statistics
(*): Estimaciones
El primero se debió básicamente a la crisis económica mundial que tanto influyó en la atonía de la demanda de la industria en general y de la industria consumidora en particular.

A partir de 1978 dicha crisis comienza a superarse y este hecho, junto a la importante subida de los precios de los concentrados y productos de titanio, impulsó a los productores a aumentar fuertemente su oferta. Ya en 1982, los precios descienden de nivel y con ellos la producción de concentrados que, en 1985, se mantenía en niveles bastante equivalentes a los de 1970, habiendo aumentado tan solo un 10% sobre las cifras de dicho año.

En los primeros años de la década de los setenta, la producción del continente americano era, con diferencia, la mayor, representando un 57% del total mundial. aportando Canadá un 40% y el resto EE.UU.

Sin embargo, en los años posteriores, esta aportación ha ido decreciendo hasta representar en la actualidad un 26% para Canadá y solo un 5.6% para EE.UU. Este último caso no significa falta de reservas para este país, sino refleja su tendencia a conseguir importaciones a precios muy económicos de un material con costes elevados de producción y sin mermar así sus recursos de un material estratégico.

La disminución observada en los países mencionados no ha supuesto disminución de la producción mundial, ya que la misma se vio compensada con el aumento de la producción europea, especialmente de la U.R.S.S. y Noruega, así como la de Australia (2º productor mundial), China, India y Malasia.

Con respecto a la producción de rutilo, su evolución ha sido similar, manteniéndose unas cifras totales bastante constantes. El primer productor mundial es Australia, con volúmenes que, actualmente suponen un 54% del total mundial, pero que aún así son bastante inferiores a las de 1970. Sin embargo, su menor aportación
se vio compensada por la de Sierra Leona y Sudáfrica, que han aumentado sus aportaciones de forma muy importante desde 1978.

La producción de estos tres países supone el 93% de la producción mundial de rutilo.

2.5.2. PRODUCCION DE SEMIELABORADOS

Dentro de la industria del titanio, se consideran como productos semielaborados:

- Rutilo Sintético
- Slag (escorias)
- Dióxido de titanio (TiO₂)
- Tetracloruro de titanio (TiCl₄).

No se conocen ni si se publican cifras reales de las cantidades obtenidas de estos productos, incluso cuando sí existen cifras de su comercio.

Tanto la producción de rutilo sintético como de escorias (slag), se pueden considerar íntimamente unidas a la producción minera, de tal forma que, en gran número de casos, las obtienen las industrias extractoras mediante tratamiento químico de los minerales originales. Debido a esta situación, las cifras de producción de rutilo sintético quedan englobadas en las de producción minera de ilmenita, pues conjuntamente las dan las compañías explotadoras.

Sin embargo, sí se conocen las principales compañías productoras de este material, así como sus capacidades teóricas de producción, que quedan recogidas en el cuadro nº 7.

El mismo problema presenta el estudio de la producción de slag, teniendo también que acudir al estudio de las empresas productoras y de sus capacidades, para formarse una idea de la
PRINCIPALES COMPANÍAS PRODUCIDORAS DE RUTILO SINTÉTICO

<table>
<thead>
<tr>
<th>COMPANÍA</th>
<th>LOCALIDAD</th>
<th>CAPACIDAD (t/a)</th>
<th>TiO2</th>
<th>CARACTERÍSTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated Minerals Consolidated</td>
<td>Capel, WA</td>
<td>60</td>
<td>92/93</td>
<td>Tecnología "Western Titanium"</td>
</tr>
<tr>
<td></td>
<td>Narabang, WA</td>
<td>112</td>
<td>92/93</td>
<td></td>
</tr>
<tr>
<td>Westralian Sands, Ltd</td>
<td>Capel, WA</td>
<td>500</td>
<td>92/93</td>
<td>Proceso Lurgi</td>
</tr>
<tr>
<td>INDIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dharamadhra (Chemical Works Ltd.)</td>
<td>Sahupuran</td>
<td>25</td>
<td>90/92</td>
<td>Proceso Wah Chang</td>
</tr>
<tr>
<td></td>
<td>Tamil Nadu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerala Minerals of Metals Ltd</td>
<td>Chavara (Kerala)</td>
<td>25</td>
<td>92</td>
<td>Proceso Benelite</td>
</tr>
<tr>
<td>Indian Rare Earths Ltd</td>
<td>Orissa</td>
<td>100</td>
<td>92</td>
<td>Proceso Benelite</td>
</tr>
<tr>
<td>JAPÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishihara Sangyo Kaisha Ltd</td>
<td>Yokkaichi</td>
<td>48</td>
<td>95</td>
<td>Tecnología ISK</td>
</tr>
<tr>
<td>EE.UU.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerr Mc Kel Chemical Corp.</td>
<td>Mobile (Alabama)</td>
<td>100</td>
<td></td>
<td>Proceso Benelite</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td></td>
<td></td>
<td>570 t/a de capacidad</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: "Industrial Minerals"
actividad productora de esta industria. Ver cuadro n° 8, donde destaca el hecho de que solo tres países, Canadá (61%), República de Sudáfrica y Noruega, son suministradores de este material.

Algo similar ocurre cuando se intenta obtener cifras de producción del tetracloruro y del dióxido de titanio.

Del primer producto apenas puede obtenerse información, aunque sí del segundo y del sistema por el que lo obtienen, lo que permite, en principio, conocer los principales fabricantes del mismo.

Por lo que se refiere al dióxido de titanio, existe información tanto sobre las empresas productoras, (cuadro n° 9), como sobre la capacidad real de producción, diferenciando las cantidades de dióxido obtenido según proceso utilizado. (Cuadro n° 10)

A partir del cuadro n° 9, se llega a la conclusión de que alrededor del 74% del dióxido destinado a la producción de metal es obtenido en América del Norte y un 18% en Europa Occidental, quedando solo un 8% para el resto del mundo.

Por el contrario, el TiO₂ destinado a la fabricación de pigmentos se reparte de la forma siguientes: 50% producido en Europa Occidental, 17% en Norteamérica, y el 33% restante por los demás países productores.

2.5.3. PRODUCCION MUNDIAL DE TITANIO METAL Y SUS ELABORADOS

Como en el caso de los productos estudiados en los apartados anteriores, no existe información estadística ni sobre la producción de la esponja de titanio, titanio metal o ferroaleaciones. Por ello, hay que recurrir a informaciones similares a las ya utilizadas, que permitan situarse en el mercado de estos materiales.
PRINCIPALES COMPANÍAS PRODUCTORAS DE SLAG

<table>
<thead>
<tr>
<th>COMPANÍA</th>
<th>LOCALIDAD</th>
<th>CAPACIDAD (000 t/a)</th>
<th>ITI02</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIT-Fer et Titane Inc.</td>
<td>Allard Lake/Sorel Quebec (Canadá)</td>
<td>1,300</td>
<td>80</td>
</tr>
<tr>
<td>Richards Bar Minerals Tisand Ptv. Ltd.</td>
<td>Richards Bar Natal (Sudáfrica)</td>
<td>440</td>
<td>85</td>
</tr>
<tr>
<td>K/S Ilmenittsmeltverket A/S</td>
<td>Tyssekal (Noruega)</td>
<td>200</td>
<td>75</td>
</tr>
</tbody>
</table>

TOTAL MUNDIAL 2,140

FUENTE: "Industrial Minerals"
<table>
<thead>
<tr>
<th>COMPAÑÍA</th>
<th>LOCALIDAD</th>
<th>CAPACIDAD (t/a)</th>
<th>Proceso (1)</th>
<th>PROPIETARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMÉRICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRASIL</td>
<td>Tahiras (Titanio de Brasil)</td>
<td>30.000</td>
<td>S</td>
<td>Bayer afiliada</td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada Titanium Pigments</td>
<td>Varennes (Québec)</td>
<td>36.000</td>
<td>S</td>
<td>N.L. Industries Group</td>
</tr>
<tr>
<td>Tioxide Canada</td>
<td>Tracy (Québec)</td>
<td>33.000</td>
<td>S</td>
<td>Tioxide Group</td>
</tr>
<tr>
<td>MEJICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigmentos y Productos químicos</td>
<td>Tampico</td>
<td>30.000</td>
<td>C</td>
<td>Du Pont afiliados</td>
</tr>
<tr>
<td>EE.UU.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.I. Du Pont de Nemours</td>
<td>New Johnsonville</td>
<td>207.000</td>
<td>C</td>
<td>Du Pont de Nemours</td>
</tr>
<tr>
<td></td>
<td>Edge Moore (Delaware)</td>
<td>150.000</td>
<td>C</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Antioch (Calif.)</td>
<td>25.000</td>
<td>C</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Barreille (N.Y.)</td>
<td>100.000</td>
<td>S</td>
<td>N.L. St. Louis</td>
</tr>
<tr>
<td></td>
<td>Savannah (Georgia)</td>
<td>69.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glidden Pigments</td>
<td>50.000</td>
<td>S</td>
<td>Glidden Durkee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ashtabula (Ohio)</td>
<td>35.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gulf & Western</td>
<td>40.000</td>
<td>S</td>
<td>Gulf Western Natural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.000</td>
<td>C</td>
<td>Ressources Group</td>
</tr>
<tr>
<td></td>
<td>Kerr McGee Chemical</td>
<td>46.000</td>
<td>C</td>
<td>Kerr McGee Corp.</td>
</tr>
<tr>
<td>EUROPA OCCIDENTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BÉLGICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kronos SA-NV</td>
<td>Langerbrugge</td>
<td>40.000</td>
<td>S</td>
<td>Miembro N.L. Industries Group (EE.UU.)</td>
</tr>
<tr>
<td></td>
<td>Antwerp</td>
<td>25.000</td>
<td>S</td>
<td>Miembro Bayer Group</td>
</tr>
<tr>
<td>FINLANDIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemira Oy</td>
<td>Pori</td>
<td>80.000</td>
<td>S</td>
<td>Compañía Estatal</td>
</tr>
<tr>
<td>FRANCIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thann et Mullhouse</td>
<td>Thann</td>
<td>20.000</td>
<td>S</td>
<td>Miembro de Tioxide Group (U.K.)</td>
</tr>
<tr>
<td></td>
<td>Le Havre</td>
<td>80.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calais</td>
<td>63.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>COMPANÍA</td>
<td>LOCALIDAD</td>
<td>CAPACIDAD (t/a)</td>
<td>Proceso (t)</td>
<td>PROPIETARIO</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>ALEMANIA, R.F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayer, AG</td>
<td>Verdingen</td>
<td>75.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Kronos Titan GmbH</td>
<td>Leverhusen</td>
<td>80.000</td>
<td>S</td>
<td>N.L. Industries Group (USA)</td>
</tr>
<tr>
<td></td>
<td>Nordenham</td>
<td>40.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homburg</td>
<td>60.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55.000</td>
<td>S</td>
<td>Metallgesellschaft Grup</td>
</tr>
<tr>
<td>ITALIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montedison</td>
<td>Springetta-Marenco</td>
<td>40.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scarlino</td>
<td>40.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>PAÍSES BAJOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioxide</td>
<td>Botlek</td>
<td>35.000</td>
<td>S</td>
<td>American Cyanamid (USA)</td>
</tr>
<tr>
<td>NORUEGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kronos Titan A/S</td>
<td>Frederikstad</td>
<td>25.000</td>
<td>S</td>
<td>N.L. Industries Group</td>
</tr>
<tr>
<td>ESPAÑA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dow-Inglesa</td>
<td>Bilbao</td>
<td>25.000</td>
<td>S</td>
<td>Dow Chemical (U.S.A.) Tioxide (U.K.) y U.E.R.T.</td>
</tr>
<tr>
<td>Titanic, S.A.</td>
<td>Huelva</td>
<td>30.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>REINO UNIDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laborie Industries</td>
<td>Stallingborough</td>
<td>55.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BTP Tioxide Ltd.</td>
<td>Billingham</td>
<td>30.000</td>
<td>S</td>
<td>Tioxide Group (USA)</td>
</tr>
<tr>
<td></td>
<td>Grimsby</td>
<td>100.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greatham</td>
<td>30.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>YUGOSLAVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinkarna Celje</td>
<td>Celje</td>
<td>20.000</td>
<td>S</td>
<td>Estatal</td>
</tr>
<tr>
<td>CHECOSLOVAQUIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerovskie Chemische</td>
<td>Prerov</td>
<td>20.000</td>
<td>S</td>
<td>Estatal</td>
</tr>
<tr>
<td>POLONIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZPN</td>
<td>Police</td>
<td>36.000</td>
<td>S</td>
<td>Estatal (tec.Kronos)</td>
</tr>
<tr>
<td>URSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aramansk</td>
<td></td>
<td>80.000</td>
<td>S</td>
<td>Estatal</td>
</tr>
<tr>
<td>Sumy</td>
<td></td>
<td>40.000</td>
<td>S</td>
<td>Estatal</td>
</tr>
<tr>
<td>Yaroslavl</td>
<td></td>
<td>4.000</td>
<td>S</td>
<td>Estatal</td>
</tr>
</tbody>
</table>
PRINCIPALES COMPAÑÍAS PRODUCTORAS DE DIOXIDO DE TITANIO

<table>
<thead>
<tr>
<th>COMPAÑIA</th>
<th>LOCALIDAD</th>
<th>CAPACIDAD (t/a)</th>
<th>Proceso (t)</th>
<th>PROPIETARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travancore Titanium Products</td>
<td>Trivandrum (Kerala)</td>
<td>14.000</td>
<td>S</td>
<td>Tioxide Group y Estatal</td>
</tr>
<tr>
<td>JAPÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teikoku Kako</td>
<td>Saidaju</td>
<td>30.000</td>
<td>S</td>
<td>Mitsubishi Group</td>
</tr>
<tr>
<td>Ishihara Sangyo Kaisha</td>
<td>Yokkaichi</td>
<td>12.000</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>12.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakai Chemical Ind</td>
<td>Onahama</td>
<td>25.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Furukawa Mining</td>
<td>Osaka</td>
<td>17.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Tohoku Chemical</td>
<td>Akita</td>
<td>14.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Titan Kogyo</td>
<td>Ube</td>
<td>13.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Fuji Titanium Ind.</td>
<td>Kobe</td>
<td>12.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>COREA DEL SUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hankuk</td>
<td>Yong Dung Po</td>
<td>10.000</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>CHINA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se piensa que produce entre 15-20.000 t/a de dióxido de titanio en Pekin y Shangai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAIWAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>También tiene pequeñas producciones en Chin Shan y Kaohsing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioxide Australia</td>
<td>Burnie, Tasmania</td>
<td>30.000</td>
<td>S</td>
<td>Tioxide Group</td>
</tr>
<tr>
<td>Laporte Titanium</td>
<td>Bunbury</td>
<td>30.000</td>
<td>S</td>
<td>Laporte Ind.</td>
</tr>
<tr>
<td>SUDAFRICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South African Titan Products</td>
<td>Umbogintwini</td>
<td>27.000</td>
<td>S</td>
<td>Tioxide Group</td>
</tr>
</tbody>
</table>

FUENTE: "Industrial Minerals"

(1) Explotación subterránea o a cielo abierto.
<table>
<thead>
<tr>
<th>Años</th>
<th>NorTEAMERICA</th>
<th>% PROCESO</th>
<th>EUROPA OCCIDENTAL</th>
<th>% PROCESO</th>
<th>RESTO DEL MUNDO</th>
<th>% PROCESO</th>
<th>TOTAL MUNDIAL</th>
<th>% PROCESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>Proceso cloruro</td>
<td>542</td>
<td>66.0</td>
<td>93</td>
<td>9.7</td>
<td>50</td>
<td>9.8</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>Proceso sulfato</td>
<td>280</td>
<td>34.0</td>
<td>842</td>
<td>90.3</td>
<td>510</td>
<td>91.2</td>
<td>1.632</td>
</tr>
<tr>
<td></td>
<td>Total Ti02</td>
<td>822</td>
<td>932</td>
<td>560</td>
<td>2.314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>Proceso cloruro</td>
<td>572</td>
<td>66.7</td>
<td>117</td>
<td>12.0</td>
<td>55</td>
<td>9.6</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td>Proceso sulfato</td>
<td>285</td>
<td>33.3</td>
<td>857</td>
<td>88.0</td>
<td>515</td>
<td>90.4</td>
<td>1.657</td>
</tr>
<tr>
<td></td>
<td>Total Ti02</td>
<td>857</td>
<td>974</td>
<td>570</td>
<td>2.401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Proceso cloruro</td>
<td>631</td>
<td>68.3</td>
<td>134</td>
<td>13.7</td>
<td>63</td>
<td>10.6</td>
<td>828</td>
</tr>
<tr>
<td></td>
<td>Proceso sulfato</td>
<td>293</td>
<td>31.7</td>
<td>839</td>
<td>86.3</td>
<td>531</td>
<td>89.4</td>
<td>1.662</td>
</tr>
<tr>
<td></td>
<td>Total Ti02</td>
<td>924</td>
<td>972</td>
<td>594</td>
<td>2.490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>Proceso cloruro</td>
<td>645</td>
<td>68.3</td>
<td>148</td>
<td>15.1</td>
<td>71</td>
<td>11.3</td>
<td>864</td>
</tr>
<tr>
<td></td>
<td>Proceso sulfato</td>
<td>300</td>
<td>31.7</td>
<td>828</td>
<td>84.9</td>
<td>553</td>
<td>88.7</td>
<td>1.681</td>
</tr>
<tr>
<td></td>
<td>Total Ti02</td>
<td>945</td>
<td>976</td>
<td>624</td>
<td>2.545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>Proceso cloruro</td>
<td>655</td>
<td>68.6</td>
<td>161</td>
<td>16.3</td>
<td>70</td>
<td>10.8</td>
<td>886</td>
</tr>
<tr>
<td></td>
<td>Proceso sulfato</td>
<td>300</td>
<td>31.4</td>
<td>829</td>
<td>83.7</td>
<td>577</td>
<td>89.2</td>
<td>1.705</td>
</tr>
<tr>
<td></td>
<td>Total Ti02</td>
<td>955</td>
<td>989</td>
<td>647</td>
<td>2.591</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Miles de toneladas
FUENTE: Elaboración propia de "Industrial Minerals"
Así, solo se van a dar a conocer las principales compañías fabricantes de estos productos, sin mencionar a las que producen ferrotitano y ferrosilicotitano, que por ser más numerosas y extendidas por el mundo, tienen menor importancia específica. Básicamente son países de Europa Occidental y Europa del Este, EE.UU, Japón y Brasil.

Con respecto al resto de los productos obtenidos por esta industria metalúrgica: esponja de titanio, titanio metal (lingotes), titanio en polvo y titanio manufacturado, puede observarse que su explotación corresponde solo a países muy industrializados con alto grado de desarrollo tecnológico, fundamentalmente: EE.UU., Japón, Alemania, R.F., Canadá, Francia, Italia y Reino Unido.

A continuación se indican estas compañías:

- **Esponja de titanio**
 - TIMET (EE.UU.)
 - RMICo. (EE.UU.)
 - Oremet (EE.UU.)
 - International Titanium (EE.UU.)
 - Albany Titanium Inc. (EE.UU.)
 - Deeside Titanium Ltd. (U.K.)
 - E.M.G. (Elettrochimica Marco Ginatta SpA (Italia)
 - Nippon Soda Co. Ltd (Japón)
 - Osaka Titanium Co. Ltd. (Japón)
 - Showa Titanium Co. Ltd. (Japón)
 - Toho Titanium Co. Ltd. (Japón)
 - New Metals (Japón)
 - Ishizuka Research (Japón)

- **Titanio metal (lingotes)**
 - Schminiedewerk Krupp-Klöckner (Alemania)
EGS Lohans KG (Alemania)
W.C. HeraensgmbH (Alemania, R.F.)
Continet Titanium Div (Alemania, R.F.)
Eldorado Ressources Ltd. (Canadá)
Futena Metal Technology (EE.UU.)
Howmet Turbine Componenty Corp. (EE.UU.)
International Light Metals Corp. (EE.UU.)
A. Johnson Metals Corp (EE.UU.)
Oremet Titanium (EE.UU.)
R.M.I. Co. (EE.UU.)
Southwestern Alloys Inc. (EE.UU.)
Teledyne Allvac (EE.UU.)
Teledyne Wah chang Albany (EE.UU.)
Teledyne Rodney Metals (EE.UU.)
Timet (EE.UU.)
Viking Metallurgical (EE.UU.)
Wyman-Gordon Co. (EE.UU.)
IMI Titanium Ltd. (Reino Unido)
Kauto Special Steel Works Ltd. (Japón)
Kobe Steel Ltd. (Japón)
Osaka Titanium Co. Ltd. (Japón)
Toho Titanium Co. Ltd. (Japón)

Titanio metal en polvo

EMG. Elettrochimica Marco Ginatta SpA (Italia)
M & A Powders Ltd. (Reino Unido)
SPMS (Francia)
Albany Titanium (EE.UU.)
American Nickel Alloy Co. (EE.UU.)
Teledyne Work Chang Co. (EE.UU.)
Chemalloy Co. Inc. (EE.UU.)
R.M.I. Co. (EE.UU.)
Micron Metals Inc. (EE.UU.)
Nippon Soda Co. Ltd. (Japón)
Nippon Stell Co. (Japón)
Titanio manufacturado

- ALS Metals Co. (EE.UU.)
- Cezus Compagnie Européenne du Zirconium (Francia)
- Contimet Titanium (Alemania, R.F.)
- IMI Titanium (Reino Unido)
- Kobe Steel Ltd (Japón)
- Schmiedewerke Krupp-Klöckner (Alemania)
- Nippon Mining Co. (Japón)
- Nippon Stell Corp (Japón)
- Nu-Tech Precision Metals (Canadá)
- RMI Co (EE.UU.)
- Sumitomo Metals Industries Ltd. (Japón)
- Teledyne Work Chang Albany (EE.UU.)
- Titanium Industries (EE.UU.)
- Titanium Metal Alloys Ltd. (Reino Unido)

2.5.4. COMERCIO INTERNACIONAL

2.5.4.1. Importaciones mundiales

Las compras de minerales de titanio, concentrados, titanio metal y óxidos de titanio, quedan recogidas en los cuadros nos 11, 12, 13, 14 y 15.

En el primero de los cuadros enumerados, puede observarse la evolución de las importaciones de los minerales y concentrados de titanio, entre los años 1970 y 1985. En este último año, la cifra total solo es superior en un 10% a la del primer año de la serie.

Destaca la importante recesión aparecida entre 1976 y 1983, descenso compensado por las cifras importadoras de la ilmenita en el mismo periodo.

En este mercado, el mayor comprador fue Japón, país que por sí solo absorbó en 1985 casi el 50% del total mundial, seguido de
IMPORTACIONES MUNDIALES DE MINERALES DE TITANIO

1970-1985

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>463.945</td>
<td>533.983</td>
<td>518.501</td>
<td>520.250</td>
<td>672.095</td>
<td>206.477</td>
<td>300.803</td>
<td>315.141</td>
<td>216.763</td>
<td>186.062</td>
<td>238.152</td>
<td>368.754</td>
<td>335.557</td>
<td>411.707</td>
<td>419.931</td>
<td>461.056</td>
</tr>
<tr>
<td>AMERICA</td>
<td>222.036</td>
<td>198.248</td>
<td>272.321</td>
<td>271.843</td>
<td>216.775</td>
<td>194.510</td>
<td>315.141</td>
<td>216.763</td>
<td>186.062</td>
<td>238.152</td>
<td>221.365</td>
<td>226.772</td>
<td>128.236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIA</td>
<td>351.667</td>
<td>560.330</td>
<td>452.036</td>
<td>509.252</td>
<td>499.865</td>
<td>449.564</td>
<td>513.008</td>
<td>518.750</td>
<td>432.505</td>
<td>478.417</td>
<td>345.194</td>
<td>398.458</td>
<td>444.467</td>
<td>685.944</td>
<td>630.831</td>
<td></td>
</tr>
</tbody>
</table>

EUROS

Country	204.945	270.576	431.292	514.452	600.275	618.765	653.211	689.750	725.295	760.845	796.395	831.946	867.497	896.047	924.608	
TOTAL	463.945	533.983	518.501	520.250	672.095	206.477	300.803	315.141	216.763	186.062	238.152	368.754	335.557	411.707	419.931	461.056

AMERICA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>515.860</td>
<td>560.330</td>
<td>452.036</td>
<td>509.252</td>
<td>499.865</td>
<td>449.564</td>
<td>513.008</td>
<td>518.750</td>
<td>432.505</td>
<td>478.417</td>
<td>345.194</td>
<td>398.458</td>
<td>444.467</td>
</tr>
</tbody>
</table>

ASIA

<table>
<thead>
<tr>
<th>Country</th>
<th>351.667</th>
<th>560.330</th>
<th>452.036</th>
<th>509.252</th>
<th>499.865</th>
<th>449.564</th>
<th>513.008</th>
<th>518.750</th>
<th>432.505</th>
<th>478.417</th>
<th>345.194</th>
<th>398.458</th>
<th>444.467</th>
<th>685.944</th>
<th>630.831</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>630.831</td>
</tr>
</tbody>
</table>

Notes:
- **(1)**: Estimaciones a partir de exportaciones de otros países.
- **(2)**: Incluye importaciones de colorante y rutita.
- **(3)**: No disponibles.
- **(4)**: Estimaciones a partir de exportaciones de otros países.
- **(5)**: Incluye importaciones de colorante y rutita.
EE.UU. (20%), Francia (8%), Bélgica-Luxemburgo (6%) y la U.R.S.S. (6%), llevándose entre estos seis países el 90% de las compras de estos materiales.

Con respecto a la ilmenita, destaca Europa, que por sí sola demanda el 70% de las importaciones, absorbiendo el resto el continente americano.

Por países, el primer puesto lo ocupan Alemania, R.F. (30%) y EE.UU. (30%), seguidos por Inglaterra (18%), Italia (9%) y Francia (8%).

Las cifras referentes al rutilo quedan recogidas en el cuadro nº 13, en el que se observa el fuerte incremento surgido entre 1972 y 1980, para luego descender paulatinamente hasta 1983 y mantenerse, con ligeras oscilaciones, a partir de tal fecha.

En general, el comercio del rutilo implica a muy pocos países, tanto en su oferta como en su demanda, ya que entre los países compradores solo destacan EE.UU. (74% del total) y Yugoslavia (21%).

El titanio metal, cuya evolución queda recogida en el cuadro nº 14, ha duplicado su volumen de importaciones entre los años de comienzo y fin de la serie, si bien su fuerte marcha ascendente se cortó en 1981, sufriendo a partir de tal fecha ligeras oscilaciones, aunque con tendencia claramente positiva.

Con respecto a este producto, Europa es la principal importadora (77%), quedando el resto para América (23%).

Por países, Inglaterra supera a EE.UU., siguiendo a ambos Alemania, Italia y Francia.

Por último, se analiza el comercio de los óxidos de titanio, que queda reflejado en el cuadro nº 15, que recoge la marcha
CUADRO N° 12

IMPORTACIONES MUNDIALES DE ILMENITA

EUROPA

<table>
<thead>
<tr>
<th>Año</th>
<th>Reino Unido</th>
<th>Belg.-Luxemb.</th>
<th>Francia</th>
<th>Alemania, R.F.</th>
<th>Italia</th>
<th>Holanda</th>
<th>España</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>298.983</td>
<td>63.641</td>
<td>75.517</td>
<td>33.058</td>
<td>31.020</td>
<td>121.514</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>302.444</td>
<td>119.708</td>
<td>85.377</td>
<td>116.251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>326.415</td>
<td>90.755</td>
<td>80.118</td>
<td>90.513</td>
<td>124.164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>225.772</td>
<td>516.503</td>
<td>379.513</td>
<td>373.776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>258.955</td>
<td>425.444</td>
<td>467.169</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>188.703</td>
<td>40.971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMÉRICA

<table>
<thead>
<tr>
<th>Año</th>
<th>E.E.U.U.</th>
<th>Brasil</th>
<th>México</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>30.022</td>
<td>69.632</td>
<td>69.408</td>
</tr>
<tr>
<td>1972</td>
<td>225.465</td>
<td>59.10</td>
<td>25.927</td>
</tr>
<tr>
<td>1973</td>
<td>322.380</td>
<td>2.85</td>
<td>29.567</td>
</tr>
<tr>
<td>1974</td>
<td>237.186</td>
<td>36.374</td>
<td>460.548</td>
</tr>
<tr>
<td>1975</td>
<td>376.374</td>
<td>21.020</td>
<td>35.729</td>
</tr>
</tbody>
</table>

TOTAL MUNDIAL

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1970:250.373</td>
<td>110.676</td>
<td>238.203</td>
<td>194.022</td>
<td>373.530</td>
<td>399.229</td>
<td>450.156</td>
<td>452.151</td>
<td>345.693</td>
<td>423.884</td>
<td>334.363</td>
<td>507.621</td>
<td>490.115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas

FUENTE: World Mineral Statistics

- **-** : No se dispone de datos
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>432</td>
<td>257</td>
<td>149</td>
<td>268</td>
<td>259</td>
<td>180</td>
<td>239</td>
<td>523</td>
<td>476</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YUGOSLAVIA</td>
<td>1.427</td>
<td>1.874</td>
<td>2.637</td>
<td>24.031</td>
<td>36.757</td>
<td>51.969</td>
<td>45.093</td>
<td>47.305</td>
<td>45.980</td>
<td>23.742</td>
<td>52.142</td>
<td>47.232</td>
<td>48.070</td>
<td>53.470</td>
<td>47.209</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.859</td>
<td>2.131</td>
<td>2.786</td>
<td>24.299</td>
<td>37.016</td>
<td>52.149</td>
<td>45.332</td>
<td>47.828</td>
<td>46.456</td>
<td>23.742</td>
<td>42.142</td>
<td>47.232</td>
<td>48.070</td>
<td>53.470</td>
<td>47.209</td>
<td>-</td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>BRASIL (1)</td>
<td>1.061</td>
<td>1.364</td>
<td>2.654</td>
<td>2.310</td>
<td>3.213</td>
<td>3.206</td>
<td>4.800</td>
<td>2.066</td>
<td>4.070</td>
<td>2.942</td>
<td>4.964</td>
<td>2.421</td>
<td>3.052</td>
<td>1.972</td>
<td>2.496</td>
<td>-</td>
</tr>
<tr>
<td>EE.UU. (2)</td>
<td>-</td>
</tr>
<tr>
<td>MEXICO (3)</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.061</td>
<td>1.364</td>
<td>202.718</td>
<td>208.114</td>
<td>226.824</td>
<td>206.868</td>
<td>260.365</td>
<td>268.750</td>
<td>277.810</td>
<td>258.370</td>
<td>212.592</td>
<td>168.545</td>
<td>105.491</td>
<td>168.756</td>
<td>165.495</td>
<td>-</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>REP. DE COREA (1)</td>
<td>-</td>
</tr>
<tr>
<td>TAILANDIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>441</td>
<td>618</td>
<td>799</td>
<td>930</td>
<td>955</td>
<td>1.225</td>
<td>799</td>
<td>930</td>
<td>955</td>
<td>1.225</td>
<td>1.235</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>2.920</td>
<td>4.092</td>
<td>207.102</td>
<td>234.498</td>
<td>266.466</td>
<td>262.064</td>
<td>309.509</td>
<td>166.630</td>
<td>321.295</td>
<td>307.475</td>
<td>316.104</td>
<td>265.343</td>
<td>222.215</td>
<td>465.448</td>
<td>221.558</td>
<td>172.632</td>
</tr>
</tbody>
</table>

(1) : Arenas de rutilo
(2) : Incluyendo rutilo sintético
(3) : Arenas de rutilo micronizadas
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>INGLATERRA (1)</td>
<td>839</td>
<td>318</td>
<td>744</td>
<td>1.373</td>
<td>1.258</td>
<td>3.487</td>
<td>5.866</td>
<td>3.952</td>
<td>7.981</td>
<td>7.000</td>
<td>8.000</td>
<td>6.200</td>
<td>7.100</td>
<td>6.900</td>
<td>7.900</td>
<td>7.960</td>
</tr>
<tr>
<td>BELG-LUXEMB.</td>
<td>540</td>
<td>312</td>
<td>454</td>
<td>967</td>
<td>1.739</td>
<td>1.598</td>
<td>1.659</td>
<td>607</td>
<td>1.463</td>
<td>4.097</td>
<td>1.420</td>
<td>914</td>
<td>1.015</td>
<td>790</td>
<td>463</td>
<td>1.313</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>1.095</td>
<td>1.556</td>
<td>1.071</td>
<td>1.121</td>
<td>1.137</td>
<td>1.518</td>
<td>1.660</td>
<td>1.025</td>
<td>985</td>
<td>1.786</td>
<td>2.809</td>
<td>3.348</td>
<td>2.896</td>
<td>1.774</td>
<td>2.397</td>
<td>2.700</td>
</tr>
<tr>
<td>ITALIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.195</td>
<td>1.609</td>
<td>1.954</td>
<td>2.770</td>
<td>2.856</td>
<td>1.539</td>
<td>1.985</td>
<td>1.850</td>
<td>1.991</td>
<td>2.806</td>
<td>3.010</td>
</tr>
<tr>
<td>HOLANDA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>264</td>
<td>221</td>
<td>240</td>
<td>260</td>
<td>239</td>
<td>239</td>
<td>171</td>
<td>244</td>
<td>253</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>ESPAÑA</td>
<td>-</td>
<td>280</td>
<td>1.370</td>
<td>1.094</td>
<td>....</td>
</tr>
<tr>
<td>SUECIA</td>
<td>511</td>
<td>319</td>
<td>274</td>
<td>650</td>
<td>961</td>
<td>1.554</td>
<td>1.396</td>
<td>737</td>
<td>1.169</td>
<td>1.025</td>
<td>1.401</td>
<td>1.737</td>
<td>1.033</td>
<td>1.145</td>
<td>802</td>
<td>634</td>
</tr>
<tr>
<td>AMÉRICA</td>
<td></td>
</tr>
<tr>
<td>CANADÁ</td>
<td>262</td>
<td>160</td>
<td>202</td>
<td>252</td>
<td>416</td>
<td>405</td>
<td>439</td>
<td>372</td>
<td>641</td>
<td>731</td>
<td>416</td>
<td>552</td>
<td>504</td>
<td>275</td>
<td>356</td>
<td>587</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>COREA, REP.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>82</td>
<td>124</td>
<td>936</td>
<td>391</td>
<td>367</td>
<td>361</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>82</td>
<td>124</td>
<td>936</td>
<td>391</td>
<td>367</td>
<td>361</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: World Mineral Statistics
(1) Estimaciones a partir de exportaciones de otros países
(1) Cifras estimadas a partir de 1979.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRANCIA</td>
<td>24.170</td>
<td>26.470</td>
<td>32.180</td>
<td>34.996</td>
<td>28.221</td>
<td>36.685</td>
<td>36.072</td>
<td>39.309</td>
<td>34.248</td>
<td>34.400</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>39.414</td>
<td>37.620</td>
<td>45.576</td>
<td>45.211</td>
<td>43.885</td>
<td>44.860</td>
<td>43.707</td>
<td>44.079</td>
<td>48.828</td>
<td>46.700</td>
</tr>
<tr>
<td>ALEMANIA R.F.</td>
<td>57.328</td>
<td>61.508</td>
<td>69.603</td>
<td>72.206</td>
<td>70.834</td>
<td>70.260</td>
<td>67.402</td>
<td>73.730</td>
<td>76.783</td>
<td>81.916</td>
</tr>
<tr>
<td>ITALIA</td>
<td>42.318</td>
<td>58.026</td>
<td>45.791</td>
<td>45.976</td>
<td>43.678</td>
<td>49.987</td>
<td>48.299</td>
<td>53.256</td>
<td>54.769</td>
<td>55.216</td>
</tr>
<tr>
<td>BULGARIA</td>
<td>-</td>
</tr>
<tr>
<td>CHECOSLOVAQUIA</td>
<td>-</td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>-</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>-</td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>-</td>
</tr>
<tr>
<td>TURQUIA</td>
<td>2.148</td>
<td>3.121</td>
<td>1.000</td>
<td>5.321</td>
<td>1.681</td>
<td>1.746</td>
<td>2.580</td>
<td>2.576</td>
<td>2.782</td>
<td>2.782</td>
</tr>
<tr>
<td>YUGOSLAVIA</td>
<td>2.419</td>
<td>2.853</td>
<td>6.686</td>
<td>6.876</td>
<td>5.397</td>
<td>5.686</td>
<td>4.199</td>
<td>5.142</td>
<td>5.026</td>
<td>1.080</td>
</tr>
<tr>
<td>TOTAL</td>
<td>292.785</td>
<td>289.289</td>
<td>330.687</td>
<td>349.653</td>
<td>370.911</td>
<td>354.308</td>
<td>375.595</td>
<td>396.270</td>
<td>392.855</td>
<td>392.855</td>
</tr>
</tbody>
</table>

CUADRO N° 15

IMPORTACIONES MUNDIALES DE OXIDOS DE TITANIO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td>449.682</td>
<td>483.514</td>
<td>565.987</td>
<td>666.540</td>
<td>572.471</td>
<td>675.835</td>
<td>700.911</td>
<td>782.800</td>
<td>802.486</td>
<td>772.835</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas

FUENTE: World Mineral Statistica

(*) Estimaciones hechas a través de exportaciones de otros países

(1) Datos desconocidos

(2) Las cifras correspondientes a 1995 son de inexactitud de datos, se que numerosos países no hablan confeccionado estadísticas.
ascendente de los mismos desde el año 1976, en que da comienzo la serie, hasta la actualidad.

Como en el caso del metal, los principales compradores son países altamente industrializados, entre los cuales figura a la cabeza EE.UU. (23%), Luxemburgo, (11%), Francia (6%), Japón (5%), Bélgica-Luxemburgo (5%), Taiwán, Canadá, Suecia, China y República de Corea.

2.5.4.2. Exportaciones mundiales

Las exportaciones de titanio, ya sea bajo la forma de minerales, de concentrados, de metal o de compuestos químicos, quedan recogidas en los cuadros n°s 16, 17, 18, 19 y 20.

En todos ellos se aprecia el escaso número de países dedicados a su venta, ya que, entre pocos y fuertes productores suministran el total de la oferta mundial.

Así, en el caso de los minerales y concentrados de titanio, entre Noruega (70%) y Sudáfrica (25%), abastecen el 95% del total mundial.

De forma parecida ocurre con la ilmenita y el rutilo. En el primer caso, Australia aporta el 75% y junto con Malasia (16%) y Sri-Lanka (8%), completan la oferta total de ilmenita.

Algo aún más radical sucede con el rutilo, que tiene dos únicos oferentes: Australia (70%) y Sierra Leona (30%).

Cuando se trata de materiales no primarios, metal y óxidos, el panorama cambia bastante. Los países exportadores suelen estar altamente industrializados, especialmente en el caso del titanio metal, cuyo mercado está abastecido por EE.UU. (38%), Japón (30%), Inglaterra (10%), Alemania (8%) y Francia (7%).
<table>
<thead>
<tr>
<th>AÑO</th>
<th>EUROPA</th>
<th>AFRICA</th>
<th>AMERICA</th>
<th>ASIA</th>
<th>TOTAL MUNDIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUA</td>
<td>1.554</td>
<td>2.248</td>
<td>592.186</td>
<td>687.434</td>
<td>783.365</td>
</tr>
<tr>
<td></td>
<td>555.398</td>
<td>748.049</td>
<td>775.203</td>
<td>728.526</td>
<td>864.799</td>
</tr>
<tr>
<td></td>
<td>1.013.373</td>
<td>638.091</td>
<td>706.697</td>
<td>753.917</td>
<td>883.230</td>
</tr>
<tr>
<td></td>
<td>931.696</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas

FUENTE: World Minerals Statistics

(1) : Minerales y slag

**** : Falta de datos

(*): Estimaciones por falta de información
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>Inglaterra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>27</td>
<td>1.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemania, R.F.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>187</td>
<td>27</td>
<td>639</td>
<td>1.535</td>
<td>3.149</td>
<td>5.186</td>
<td>2.026</td>
<td>16</td>
<td>788</td>
<td>7.556</td>
</tr>
<tr>
<td>Finlandia</td>
<td>24.667</td>
<td>10.500</td>
<td>9.079</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Holanda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.664</td>
<td>1.985</td>
<td>886</td>
<td>563</td>
<td>2.457</td>
<td>4.174</td>
<td>1.949</td>
<td>-</td>
<td>657</td>
<td>617</td>
<td>769</td>
</tr>
<tr>
<td>Noruega (1) (2)</td>
<td>532.126</td>
<td>513.835</td>
<td>598.729</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>556.793</td>
<td>524.335</td>
<td>607.808</td>
<td>-</td>
<td>1</td>
<td>1.688</td>
<td>2.172</td>
<td>913</td>
<td>1.202</td>
<td>3.992</td>
<td>7.323</td>
<td>7.125</td>
<td>2.687</td>
<td>633</td>
<td>1.584</td>
<td>9.420</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>54.053</td>
<td>50.358</td>
<td>68.945</td>
<td>75.055</td>
<td>118.634</td>
<td>68.975</td>
<td>120.727</td>
<td>76.699</td>
<td>96.728</td>
<td>53.043</td>
<td>11.306</td>
<td>49.702</td>
<td>40.167</td>
<td>40.167</td>
<td>40.167</td>
<td>40.167</td>
</tr>
<tr>
<td>Malasia</td>
<td>222.611</td>
<td>155.952</td>
<td>154.320</td>
<td>185.413</td>
<td>153.530</td>
<td>112.248</td>
<td>180.004</td>
<td>153.679</td>
<td>165.984</td>
<td>212.837</td>
<td>199.486</td>
<td>176.432</td>
<td>77.159</td>
<td>207.297</td>
<td>244.042</td>
<td>245.218</td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: World Minerals Statistics
(1): Cifras conjuntas de ilmenita y rutilo
(2): A partir de 1973 aparecen sus producciones en "Minerales de Titanio"
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ÁFRICA</td>
<td></td>
</tr>
<tr>
<td>SERRA LEIMA</td>
<td>29.230</td>
<td>16.379</td>
<td>....</td>
</tr>
<tr>
<td>TOTAL</td>
<td>29.230</td>
<td>16.379</td>
<td>....</td>
</tr>
<tr>
<td>ÁSIA</td>
<td></td>
</tr>
<tr>
<td>SRI LANKA</td>
<td>78.082</td>
<td>86.669</td>
<td>3.277</td>
<td>2.846</td>
<td>2.393</td>
<td>....</td>
</tr>
<tr>
<td>TOTAL</td>
<td>78.082</td>
<td>86.669</td>
<td>3.277</td>
<td>2.846</td>
<td>2.393</td>
<td>....</td>
</tr>
<tr>
<td>OCÉANIA</td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: World Minerals Statistics
.....: Cifras desconocidas
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>INGLATERRA (*)</td>
<td>54</td>
<td>109</td>
<td>164</td>
<td>191</td>
<td>110</td>
<td>103</td>
<td>113</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>2,542</td>
</tr>
<tr>
<td>BELG.LUXEMB.</td>
<td>-</td>
<td>532</td>
</tr>
<tr>
<td>FRANCIA</td>
<td></td>
</tr>
<tr>
<td>ALEMANIA, R.F.</td>
<td>1,411</td>
<td>1,643</td>
<td>1,905</td>
<td>1,666</td>
<td>2,234</td>
<td>2,132</td>
<td>1,817</td>
<td>2,300</td>
<td>2,325</td>
<td>1,866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALIA</td>
<td>-</td>
<td>151</td>
</tr>
<tr>
<td>HOLANDA</td>
<td></td>
</tr>
<tr>
<td>U.R.S.S. (#)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,807</td>
<td>4,916</td>
<td>5,271</td>
<td>7,606</td>
<td>6,058</td>
<td>5,137</td>
<td>4,165</td>
<td>4,824</td>
<td>4,713</td>
<td>7,671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>CANADA (1)</td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td>2,633</td>
<td>1,552</td>
<td>3,196</td>
<td>3,760</td>
<td>4,291</td>
<td>4,328</td>
<td>6,569</td>
<td>4,080</td>
<td>7,086</td>
<td>7,903</td>
<td>8,094</td>
<td>8,816</td>
<td>7,433</td>
<td>7,198</td>
<td>6,727</td>
<td>8,98</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,633</td>
<td>1,552</td>
<td>3,196</td>
<td>3,760</td>
<td>4,291</td>
<td>4,328</td>
<td>6,569</td>
<td>5,011</td>
<td>7,860</td>
<td>8,631</td>
<td>8,792</td>
<td>10,715</td>
<td>8,076</td>
<td>7,900</td>
<td>7,097</td>
<td>9,796</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>JAPON</td>
<td>4,358</td>
<td>2,803</td>
<td>3,256</td>
<td>2,264</td>
<td>2,892</td>
<td>2,391</td>
<td>2,555</td>
<td>3,444</td>
<td>5,741</td>
<td>7,113</td>
<td>8,065</td>
<td>10,005</td>
<td>7,503</td>
<td>6,044</td>
<td>9,700</td>
<td>7,330</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,358</td>
<td>2,803</td>
<td>3,256</td>
<td>2,264</td>
<td>2,892</td>
<td>2,391</td>
<td>2,555</td>
<td>3,444</td>
<td>5,741</td>
<td>7,113</td>
<td>8,065</td>
<td>10,005</td>
<td>7,503</td>
<td>6,044</td>
<td>9,700</td>
<td>7,330</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>6,991</td>
<td>4,355</td>
<td>6,452</td>
<td>6,024</td>
<td>7,183</td>
<td>6,319</td>
<td>11,931</td>
<td>13,371</td>
<td>18,872</td>
<td>19,977</td>
<td>23,350</td>
<td>22,915</td>
<td>19,744</td>
<td>18,768</td>
<td>21,510</td>
<td>24,797</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: World Minerals Statistics
(*) : Cifras no comunicadas
(1) : Exportaciones a EE.UU.
(#) : Estimaciones sobre operaciones con otros países
Exportaciones Mundiales de Oxidos de Titanio

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INGLATERRA</td>
<td>86.425</td>
<td>97.709</td>
<td>94.888</td>
<td>94.602</td>
<td>108.149</td>
<td>89.409</td>
<td>96.547</td>
<td>119.012</td>
<td>117.190</td>
</tr>
<tr>
<td>BELG-LUXEM.</td>
<td>51.112</td>
<td>60.417</td>
<td>57.964</td>
<td>58.419</td>
<td>56.755</td>
<td>66.727</td>
<td>55.834</td>
<td>64.101</td>
<td>62.727</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>103.289</td>
<td>101.969</td>
<td>110.843</td>
<td>126.370</td>
<td>107.461</td>
<td>126.407</td>
<td>118.413</td>
<td>141.958</td>
<td>148.788</td>
</tr>
<tr>
<td>ITALIA (b) (#)</td>
<td>33.063</td>
<td>29.065</td>
<td>25.648</td>
<td>24.577</td>
<td>19.733</td>
<td>31.095</td>
<td>11.100</td>
<td>14.000</td>
<td>17.900</td>
</tr>
<tr>
<td>CHECOSLOVAKIA (#)</td>
<td>-</td>
<td>-</td>
<td>2.400</td>
<td>2.100</td>
<td>3.000</td>
<td>2.600</td>
<td>3.700</td>
<td>2.700</td>
<td>2.300</td>
</tr>
<tr>
<td>FINLANDIA (c)(#)</td>
<td>49.398</td>
<td>54.240</td>
<td>50.511</td>
<td>42.600</td>
<td>36.100</td>
<td>32.000</td>
<td>30.000</td>
<td>61.959</td>
<td>44.700</td>
</tr>
<tr>
<td>NORUEGA (d)</td>
<td>1.102</td>
<td>853</td>
<td>1.133</td>
<td>1.227</td>
<td>1.137</td>
<td>1.110</td>
<td>1.179</td>
<td>2.996</td>
<td>2.474</td>
</tr>
<tr>
<td>U.R.S.S. (#)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.500</td>
<td>1.300</td>
<td>1.200</td>
<td>700</td>
</tr>
<tr>
<td>SUECIA</td>
<td>-</td>
<td>-</td>
<td>184</td>
<td>303</td>
<td>438</td>
<td>671</td>
<td>568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>523.294</td>
<td>571.128</td>
<td>608.110</td>
<td>640.695</td>
<td>579.182</td>
<td>632.062</td>
<td>687.920</td>
<td>702.482</td>
<td>703.043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td>18.861</td>
<td>15.134</td>
<td>35.656</td>
<td>46.680</td>
<td>41.562</td>
<td>56.861</td>
<td>61.910</td>
<td>84.904</td>
<td>98.340</td>
</tr>
<tr>
<td>TOTAL</td>
<td>29.098</td>
<td>29.319</td>
<td>51.338</td>
<td>64.650</td>
<td>50.929</td>
<td>70.913</td>
<td>81.788</td>
<td>108.094</td>
<td>122.119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHINA (#)</td>
<td>-</td>
<td>-</td>
<td>1.300</td>
<td>1.500</td>
<td>1.700</td>
<td>1.900</td>
<td>2.500</td>
<td>2.100</td>
<td>2.300</td>
</tr>
<tr>
<td>JAPON</td>
<td>60.349</td>
<td>42.064</td>
<td>34.662</td>
<td>41.163</td>
<td>46.434</td>
<td>45.491</td>
<td>58.241</td>
<td>60.351</td>
<td>59.923</td>
</tr>
<tr>
<td>TAIWAN</td>
<td>13.992</td>
<td>8.471</td>
<td>468</td>
<td>96</td>
<td>789</td>
<td>113</td>
<td>234</td>
<td>7.971</td>
<td>81</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85.028</td>
<td>62.920</td>
<td>52.906</td>
<td>62.302</td>
<td>65.661</td>
<td>69.858</td>
<td>82.589</td>
<td>96.977</td>
<td>91.930</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL MUNDIAL</td>
<td>637.420</td>
<td>663.367</td>
<td>712.354</td>
<td>767.647</td>
<td>695.772</td>
<td>772.833</td>
<td>772.297</td>
<td>907.553</td>
<td>907.092</td>
</tr>
</tbody>
</table>

FUENTE: World Mineral Statistics

- (#): Estimaciones en base a importaciones de otros países
- (b): Italia aparece con estimaciones desde 1982
- (d): Se excluyen óxidos para pigmentos
- (e): Solo contienen exportaciones a EE.UU.
- (f): Reexportaciones
En el caso de los óxidos de titanio, cuya evolución es ascendente desde 1976, existen mayor número de países que ofertan sus productos, situándose a la cabeza Alemania, (25%), Francia (17%), Inglaterra (13%), EE.UU. (10%), Bélgica-Luxemburgo (8%), Japón, Finlandia, Holanda e Italia, siendo por tanto Europa el continente más exportador con un 77% del total.

2.5.5. CONSUMO MUNDIAL

Es prácticamente imposible conocer el consumo de titanio, ya que, en general, los países evitan dar a conocer dichas cifras por considerar este producto de interés estratégico.

Como dato de interés, pero de carácter aproximativo, se ha llegado a hacer una estimación del consumo de los minerales de titanio, cuyo total se ha repartido, geográficamente, de la siguiente forma:

<table>
<thead>
<tr>
<th>Área</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europa</td>
<td>42%</td>
</tr>
<tr>
<td>EE.UU.</td>
<td>17%</td>
</tr>
<tr>
<td>Japón</td>
<td>11%</td>
</tr>
<tr>
<td>India</td>
<td>10%</td>
</tr>
<tr>
<td>Corea</td>
<td>6%</td>
</tr>
<tr>
<td>Taiwán</td>
<td>3%</td>
</tr>
<tr>
<td>Otros</td>
<td>11%</td>
</tr>
</tbody>
</table>

Estos minerales, ilmenita y rutilo, han tenido dos destinos básicos: producción de metal y producción de pigmentos y otros usos no metálicos.

En 1983, según el U.S. Bureau of Mines, del consumo total de ilmenita, solo un 3% se destina a la producción de metal y el resto a pigmentos y otros usos.

Para el rutilo estas cifras variaban, dedicándose un 14% al primer uso y todo el resto al segundo.
Por usos finales, puede afirmarse que un 63% del metal primario proviene de la ilmenita y un 37% del rutilo, mientras que en el segundo grupo estas cifras se convierten en un 89% para la ilmenita y un 11% solamente para el rutilo.

Estas tendencias no se cree puedan variar a corto plazo y la preponderancia del consumo de la ilmenita se mantendrá todavía durante largo tiempo. Como causa más importante de la misma está el descenso del número de plantas industriales de pigmentos y la conversión de las ya existentes con procesos de sulfatos, que consumían rutilo y deterioraban mucho el medio ambiente, en plantas que utilizan procesos de cloruros de titanio y que funcionan con rutilo sintético, obtenido a partir de la ilmenita.

Por otra parte, no se cree que el consumo de TiO₂ aumente demasiado, ya que, además del descenso ya indicado del número de plantas de pigmentos de titanio, los usos de tales pigmentos no se han incrementado en absoluto, por lo que la demanda de los mismos por parte de los países industrializados, no ha existido o ha sido pequeña.

Igualmente ocurre con el titanio metal, cuyas aplicaciones tampoco se han desarrollado tanto como para demandar mayores cantidades de TiO₂, por lo que tampoco por este lado se espera gran aumento de la demanda.

En lo que respecta a la distribución del consumo por usos finales, no se puede hablar de una distribución específica, ya que varía por áreas geográficas y países, según su grado de industrialización. Un pequeño resumen de este reparto del consumo de TiO₂ por usos y países queda reflejado en el cuadro no 21.
CUADRO N° 21

CONSUMO DE TIO₂ POR USOS FINALES (%)

<table>
<thead>
<tr>
<th></th>
<th>EUROPA</th>
<th>AMERICA</th>
<th>AFRICA</th>
<th>ORIENTE MEDIO</th>
<th>OCEANIA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINTURA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>. Al agua</td>
<td>24.3</td>
<td>30.0</td>
<td>33.7</td>
<td>41.2</td>
<td>18.7</td>
<td>26.4</td>
</tr>
<tr>
<td>. Otras</td>
<td>42.6</td>
<td>24.5</td>
<td>52.3</td>
<td>44.4</td>
<td>42.0</td>
<td>34.9</td>
</tr>
<tr>
<td>TOTAL PINTURA</td>
<td>66.9</td>
<td>54.5</td>
<td>86.0</td>
<td>85.6</td>
<td>60.7</td>
<td>61.3</td>
</tr>
<tr>
<td>PAPEL</td>
<td>8.0</td>
<td>20.0</td>
<td>1.4</td>
<td>--</td>
<td>6.1</td>
<td>12.7</td>
</tr>
<tr>
<td>PLASTICOS/SUELOS</td>
<td>15.9</td>
<td>16.1</td>
<td>6.6</td>
<td>7.4</td>
<td>14.3</td>
<td>15.5</td>
</tr>
<tr>
<td>GOMA</td>
<td>1.1</td>
<td>2.0</td>
<td>0.7</td>
<td>1.3</td>
<td>4.3</td>
<td>1.9</td>
</tr>
<tr>
<td>TINTAS</td>
<td>2.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.6</td>
<td>3.8</td>
<td>2.1</td>
</tr>
<tr>
<td>FIBRAS TEXTILES</td>
<td>2.6</td>
<td>2.1</td>
<td>1.2</td>
<td>2.2</td>
<td>5.0</td>
<td>2.7</td>
</tr>
<tr>
<td>INDUSTRIA CERAMICA</td>
<td>1.6</td>
<td>1.6</td>
<td>0.5</td>
<td>1.6</td>
<td>3.5</td>
<td>1.8</td>
</tr>
<tr>
<td>OTROS</td>
<td>1.9</td>
<td>2.1</td>
<td>2.4</td>
<td>1.3</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

| PORCENTAJE ZONA | 39.2 | 43.2 | 2.0 | 1.5 | 14.1 | 100.0 |

FUENTE: Industrial Minerals.
2.5.6. PRECIOS

Al hablar de los precios del titanio hemos de hacer referencia no sólo a los precios del metal, sino también a los de los minerales de los cuales se obtiene.

El indicador de los precios internacionales que más elevada aceptación tiene es el publicado por el Metal Bulletin de Londres.

Esta cotización es empleada por los grandes agentes internacionales y, en la actualidad, continua siendo la base para las negociaciones con los países del Este, y, especialmente, con la R.P. China.

La cotización se fija como estimación de la revista, a partir de las informaciones realizadas de forma voluntaria, sobre las operaciones concertadas entre productores, agentes y consumidores de todo el mundo y, particularmente, de Europa.

La evolución de los precios de los minerales y productos de titanio de los últimos años, queda recogida en los cuadros nos 22, 23 y 24.

En general, estos precios han seguido una tendencia ascendente, especialmente la ilmenita, debido al continuo incremento de su demanda. Por el contrario, el rutilo tuvo un descenso bastante acusado durante los años 1980 y 1982, motivado por la restricción de su demanda, restricción que tuvo su origen en dos causas: la disminución del número de plantas de pigmentos, principales consumidores de este mineral y el uso del rutilo sintético, que sustituirá al natural, fabricado a partir de ilmenita.

Este descenso en los precios llevó a la consiguiente reducción de la producción minera, especialmente en el caso del mineral suministrado por la Costa Oeste de Australia, desencadenándose así un nuevo aumento en las cotizaciones a partir de 1983.
CUADRO N° 22

PRECIOS MUNDIALES DE LOS MINERALES DE TITANIO

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>ILMENITA (1) (concent. min. 54% TiO₂)</th>
<th>RUTILO (graneled) (2) (concent. 95-97% TiO₂)</th>
<th>RUTILO (lotes) (2) (concent. 95-97% TiO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>A $ 24 - 25</td>
<td>A $ 270 - 290</td>
<td>A $ 300 - 320</td>
</tr>
<tr>
<td>1979</td>
<td>A $ 17 - 19</td>
<td>A $ 290 - 330</td>
<td>A $ 320 - 350</td>
</tr>
<tr>
<td>1980</td>
<td>A $ 20 - 22</td>
<td>A $ 290 - 330</td>
<td>A $ 320 - 350</td>
</tr>
<tr>
<td>1981</td>
<td>A $ 24 - 25</td>
<td>A $ 270 - 290</td>
<td>A $ 300 - 320</td>
</tr>
<tr>
<td>1984</td>
<td>A $ 40 - 43</td>
<td>A $ 400 - 420</td>
<td>A $ 425 - 450</td>
</tr>
<tr>
<td>1985</td>
<td>A $ 55 - 60</td>
<td>A $ 560 - 580</td>
<td>A $ 600 - 650</td>
</tr>
<tr>
<td>1986</td>
<td>A $ 70 - 80</td>
<td>A $ 620 - 640</td>
<td>A $ 660 - 700</td>
</tr>
<tr>
<td>1987</td>
<td>A $ 70 - 80</td>
<td>A $ 570 - 600</td>
<td>A $ 605 - 650</td>
</tr>
</tbody>
</table>

UNIDAD: Dolares australianos por tm (cotizaciones de Diciembre de cada año)

FUENTE: Metal Bulletin
(1) : Precios F.O.B.
(2) : Precios F.O.B./F.I.D.
CUADRO N° 23

PRECIOS MUNDIALES DEL TITANIO METAL

<table>
<thead>
<tr>
<th></th>
<th>ESPOJNA (1) (99,3% max)</th>
<th>VARILLAS (2) (50 mm diá.)</th>
<th>ALAMBRE (2) (2 mm diá.)</th>
<th>LAMINAS (2) (espesor 1 mm)</th>
<th>PLANCHAS (2) (espesor 12 mm)</th>
<th>TUBOS (3) (lotes de 1500 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>£ 3,400 - 3,600</td>
<td>£ 17,21</td>
<td>£ 23,81</td>
<td>£ 17,07</td>
<td>£ 13,95</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1979</td>
<td>£ 3,400 - 3,600</td>
<td>£ 17,21</td>
<td>£ 23,81</td>
<td>£ 17,08</td>
<td>£ 13,95</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1980</td>
<td>£ 3,400 - 3,600</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1981</td>
<td>$ 2,50 - 3,50</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1982</td>
<td>$ 2,50 - 3,50</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1983</td>
<td>$ 3,25 - 4,50</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1984</td>
<td>$ 4,00 - 4,25</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1985</td>
<td>$ 3,45 - 3,65</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1986</td>
<td>$ 3,70 - 3,90</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
<tr>
<td>1987</td>
<td>$ 4,00 - 4,20</td>
<td>£ 18,74</td>
<td>£ 27,47</td>
<td>£ 18,18</td>
<td>£ 14,84</td>
<td>£ 11,71</td>
</tr>
</tbody>
</table>

UNIDAD: Precios de final de año

(2) : Libras por kg - Lotes de 2,000 kg
(3) : £ por metro - Lotes de 1,500 m.

FUENTE: Metal Bulletin
CUADRO N° 24

PRECIOS CHATARRAS DE TITANIO (1)

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>RECORTES (comercial/m.puro)</th>
<th>VIRUTAS (comercial/m.puro)</th>
<th>VIRUTAS (90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>$2,25 - 2,50</td>
<td>$1,50 - 1,80</td>
<td>$0,70 - 0,80</td>
</tr>
<tr>
<td>1981</td>
<td>$0,80 - 1,10</td>
<td>$0,70 - 1,00</td>
<td>$0,43 - 0,50</td>
</tr>
<tr>
<td>1982</td>
<td>$0,65 - 0,77</td>
<td>$0,45 - 0,55</td>
<td>$0,22 - 0,27</td>
</tr>
<tr>
<td>1983</td>
<td>$0,70 - 0,85</td>
<td>$0,60 - 0,75</td>
<td>$0,40 - 0,50</td>
</tr>
<tr>
<td>1984</td>
<td>$1,35 - 1,65</td>
<td>$0,85 - 1,35</td>
<td>$0,69 - 0,83</td>
</tr>
<tr>
<td>1985</td>
<td>$1,15 - 1,40</td>
<td>$0,90 - 1,20</td>
<td>$0,58 - 0,66</td>
</tr>
<tr>
<td>1986</td>
<td>$1,15 - 1,40</td>
<td>$0,90 - 1,15</td>
<td>$0,56 - 0,65</td>
</tr>
<tr>
<td>1987</td>
<td>$1,15 - 1,40</td>
<td>$1,20 - 1,40</td>
<td>$0,75 - 0,82</td>
</tr>
</tbody>
</table>

UNIDAD: U.S. $ por libra. Precios C.I.F.
FUENTE: Metal Bulletin
(1): Cotizaciones correspondientes a los meses de Diciembre de cada año.
Por otro lado, los precios de los metales y chatarras de titanio, o bien permanecieron prácticamente constantes, caso de los productos terminados, o bien tuvieron un ligero descenso entre los años 1980 y 1983, para, a partir de dicho año, volver a situarse en niveles similares o ligeramente inferiores a los de 1980.

Aparte de los factores coyunturales y fluctuaciones en la demanda y oferta de cada producto que inciden sobre sus precios, éstos pueden variar, para una misma época y producto, en función de factores externos, como la calidad y presentación de los mismos.

En general, la comercialización de los materiales de titanio se suele hacer bajo las siguientes formas y presentaciones:

- **A granel**: - Concentrados y escorias de ilmenita
 - Concentrados de rutilo
 - Pigmentos de dióxido de titanio

- **En sacos o contenedores**: - Concentrados de rutilo

- **En sacos o cisternas**: - Dióxido de titanio

- **En barriles**: - Titanio metal, esponja y polvo

- **Lotes**: - 5.000 t para concentrados de rutilo
 - 2.500 - 5.000 t para concentrados de ilmenita a Europa
 - 10.000 - 25.000 t para concentrados de ilmenita a ultramar
 - 500 libras para titanio metal
 - 2 t para titanio metal (tochos)
 - 20 t para pigmentos (camión)
 - 40-65 t para pigmentos (ferrocarril)

Con respecto a la calidad de los productos, las más normalizadas son las siguientes:
Ilmenita

Calidad normalizada: concentrados con contenido mínimo del 54% TiO₂.

Rutilo

Calidad normalizada: concentrados con un contenido mínimo 95-97% TiO₂.
3. EL TITANIO EN ESPAÑA
En España los primeros datos conocidos sobre la extracción de minerales de titanio se remontan a 1935, siendo en la provincia de La Coruña donde dieron comienzo los primeros trabajos. La producción en general ha sido pequeña y en 1973 cesó toda actividad conocida. El principal problema de esta minería en nuestro país fue de costos, una bajada en la cotización internacional, así como un cambio en nuestra política económica dio lugar a que los recursos existentes pasaran a la categoría de subeconómicos. Asimismo, la existencia en aquella época de un solo comprador nacional presentaba aspectos negativos para los explotadores de minerales de titanio.

A continuación se examinan los yacimientos conocidos, la minería que se practicaba y los datos relativos a comercio y consumo del mercado español de titanio

3.1. YACIMIENTOS

La mayor parte de los indicios y de los principales yacimientos de titanio en España se encuadran, desde el punto de vista tipológico, en el grupo A (mineralizaciones en relación con complejos básicos) y en el C (Placeres, tanto de tipo aluvionar como de playa).

Debido a que los criterios geológicos y de proximidad geográfica, fueron los seguidos para definir las zonas de España con indicios y mineralizaciones en el Mapa Previsor de Mineralizaciones de Titanio (IGME, 1972) y no han variado con las investigaciones geológicas más recientes, se ha establecido una división muy similar a la establecida en el citado trabajo.

Se ha dividido el país en cuatro zonas:

1.- Galicia
2.- Oeste (Zamora, Salamanca, Extremadura)
3.- Andalucía
4.- Resto de España.

De éstas, solo la 1 (La Coruña) y la 3 (Huelva), presentan mayor interés económico y tradición en esta minería.

3.1.1. GALICIA

La minería del titanio se localizó principalmente en la provincia de La Coruña y dio la totalidad de la producción nacional en los últimos años de actividad registrada, de 1970 a 1973.

Titanio, S.A. y Mina Artemia fueron las primeras empresas que se dedicaron a esta minería, aunque también existían otros pequeños explotadores, que en un principio se limitaban a vender sus preconcentrados a las dos empresas anteriormente citadas. Posteriormente se constituyeron otras empresas como MINS, S.A. y Midusa, que hasta el final del periodo extractivo fueron las más importantes de la región.

También se conocen manifestaciones de poca importancia en las provincias de Pontevedra y Orense.

Contexto geológico

Desde el punto de vista geológico Galicia se incluye en la zona Galaico-Castellana, según la división en zonas del Macizo Hespérico realizado por Lotze y posteriormente revisada por Matte.

Esta división se estructura en bandas o zonas alargadas con diferente sentido paleográfico y con sensibles diferencias en cuanto al metamorfismo y al magmatismo.

La zona se caracteriza por el predominio de los materiales magmáticos intrusivos sobre los metasedimentos, así como por la ausencia de materiales devónico-carboníferos en contraposición a la abundancia de materiales preordovícicos y silúricos.
A grandes rasgos, está constituido por un sustrato precámbrico, variado e irregularmente repartido, sobre el que se halla, mediante contactos anormales discordantes, un Paleozoico incompleto de facies muy diversas, el mesozoico está ausente, y la serie estratigráfica culmina con depósitos terciarios en cuencas aisladas intramontañosas y un Cuaternario más o menos aterrazado en el cauce de los principales ríos que cruzan la región.

Yacimientos

La localización de las mineralizaciones titanníferas de la zona está controlada por factores tanto litológicos como estructurales.

Así, es evidente la relación entre los afloramientos de gabros y las concentraciones de minerales titanníferos (tipo A). Dentro de estas manifestaciones se pueden distinguir como más importantes los siguientes:

Al NO de Santiago de Compostela, en la comarca denominada Monte Castelo, y emplazada en el gran lopolito básico, se sitúa un complejo de gabros de inyección múltiple, constituido por diferentes capas y cuyos espesores varían entre 100 y 500 m, así como su orientación, oscilando entre N-20°-O y N-20°-E.

Otra zona con importantes afloramientos de gabros es la situada al norte de la anterior, entre los pueblos de Carballo, Laracha y la costa Atlántica.

Además existen, dentro del complejo básico de Cabo Ortegal, una serie de pequeños afloramientos de gabros, dispersamente situados.

Dentro de los factores definidos, la mayor parte de las mineralizaciones están relacionadas con una serie de fracturas, debidas probablemente a la tercera fase de la tectónica hercínica, lo cual...
permite considerar estas fracturas como factor geológico estructural (tipo C). Tienen gran importancia las formaciones mioceno-pliocénicas caracterizadas por las formaciones de depósitos coluviales, aluviales, fluviales y terrazas costeras coronadas por alineaciones dunales.

Para describirlos se han agrupado en dos áreas geográficas. La primera comprende los yacimientos de La Coruña y la segunda los indicios de Pontevedra y Orense.

3.1.1.1. La Coruña

En esta provincia se explotaron los aluviales y coluviales procedentes de la denudación de los gabros del Macizo de Monte Castedo. Han existido en total alrededor de 90 concesiones de ilmenita de las que 25 estuvieron en actividad hasta 1973. A continuación se describen con más detalle los grupos mineros de este área pertenecientes a las cuatro empresas explotadoras más importantes: Midusa, Mins, S.A., Ferreiro y Suarez Lago.

3.1.1.1.1. Yago y Carmen

En estas dos minas se centraba la principal actividad minera que la empresa Midusa tenía en los términos de Coristanco, Santa Comba, Tordoya y Valle del Dubra, donde llegó a tener 20 concesiones que ocupaban 1.982 Ha., situadas principalmente a ambos lados de la carretera de Angeriz a Santa Comba.

Yacimiento

Son placeres de tipo aluvial, constituidos por una masa arcillosa en la que se encuentran fragmentos dispersos constituidos exclusivamente por rocas básicas (gabros), del tipo que forman la zona circundante y a los que se debe la formación del aluvial. El aluvión descansa, casi siempre, sobre una formación llamada localmente "lastre", que procede de la alteración de la roca básica in
situ, que constituye las primitivas cuencas (brañas) en las que se han ido depositando los aluviones.

En la roca madre la concentración en ilmenita es del orden del 1% y en cambio en las brañas esta concentración es muy variable, desde el 2% en sus márgenes, hasta el 15-20% en el centro. En un principio, aunque los aluviones presentaban grandes variaciones en su grosor, composición granulométrica y contenido en ilmenita, se consideraron explotables con un mínimo de 3-3,5% de ilmenita.

Minería

La explotación se realizaba mediante dragalinas con un cazo de 200-250 litros.

Mineralurgia

El todo-uno se vertía en trómeles desenlodadores, pasando luego el producto a una criba giratoria con dos rejillas de 18 y 4 mm. Los tamaños entre 0-4 mm iban a dos jigs donde se concentraban y los mayores se consideraban estériles, pasando a la escombrera. Se trataban diariamente 1.000-1.500 t de tierra, obteniéndose un preconcentrado del 31%.

Parte de este preconcentrado se transportaba al lavadero que la empresa tenía en Angeriz, y otra parte era cedida a Mins, S.A., para su posterior concentración al 52%, mediante concentración magnética ó electrostática, de la cual carecía Midusa.

El lavadero tenía una capacidad de 18 t/h de preconcentrado, del que se obtenía, después de un cribado, tres tamaños: finos, medios y gruesos, cada uno de los cuales pasaba a un jig y de allí a un grupo de mesas Wilfley escalonadas. La producción era del orden de 10 a 10,5 t/h de un concentrado del 48-50% en TiO₂.

- 95 -
De 1961 a 1964 la mayor parte de la producción se exportaba por el puerto de La Coruña principalmente al grupo italiano Montecatini.

Producciones

Entre 1961-1969 Midusa produjo de sus concesiones alrededor de 170.000 t, distribuidas de la siguiente forma:

<table>
<thead>
<tr>
<th>Año</th>
<th>Concentrados de ilmenita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toneladas</td>
</tr>
<tr>
<td>1961</td>
<td>8.000</td>
</tr>
<tr>
<td>1962</td>
<td>20.000</td>
</tr>
<tr>
<td>1963</td>
<td>25.000</td>
</tr>
<tr>
<td>1964</td>
<td>20.000</td>
</tr>
<tr>
<td>1965</td>
<td>13.000</td>
</tr>
<tr>
<td>1966</td>
<td>20.000</td>
</tr>
<tr>
<td>1967</td>
<td>22.000</td>
</tr>
<tr>
<td>1968</td>
<td>22.000</td>
</tr>
<tr>
<td>1969</td>
<td>20.000</td>
</tr>
</tbody>
</table>

Siendo de 240.000 t el total de su producción desde su comienzo hasta aproximadamente 1973 año en que se terminó la actividad minera.

3.1.1.1.2. Estrella y Mª Antonia

Estas minas, pertenecientes a Mins, S.A., fueron las mas explotadas del conjunto de 20 concesiones que ocupaban cerca de 2.500 ha en los términos de Carballo, Valle del Dubra, Coristanco y Tordoya. La actividad minera comenzó en 1952 y terminó en 1969.
Yacimientos

Son depósitos de tipo coluvial y aluvial con parecidas características a las descritas en el apartado anterior.

Minería

La explotación se realizó mediante dragalinhas.

Mineralurgia

El todo-unos extraído se lavaba mediante trómeles para obtener un preconcentrado del 34%, que se llevaba al lavadero que la compañía tenía cerca de Carballo, junto a la carretera de Finisterre.

En el lavadero, el preconcentrado se conducía desde la tolva a un molino de barras para su molturación, pasaba a un clasificador y de allí, por gravedad, junto con gran cantidad de agua, a las mesas de separación magnética, donde se obtenía: estériles, que iban directamente a la escombrera; mixtos, que se devolvían al clasificador; y concentrados, los cuales, después de perder el agua, se llevaban a un horno rotatorio para su secado. Una vez seco se conducía a una criba vibratoria y por medio de sinfines se distribuía a cuatro separadores que hacían una primera separación electrostática, obteniéndose un estéril que iba a la escombrera y un producto rico que pasaba a las separadoras electromagnéticas, que eran las que producían el concentrado.

El lavadero tenía una capacidad de 60.000 t/a y trataba tanto estos preconcentrados como otros procedentes de Midusa, para obtener dos clases de productos, uno con el 52% de TiO₂ para la exportación, y otro del 51% para el mercado interior.
Producciones

Desde el inicio de las actividades hasta 1969 la producción total obtenida ha sido superior a las 150.000 t de concentrados, gran parte destinadas a la exportación, principalmente a Francia.

Entre 1961 y 1969, año de cierre de las minas, las producciones han sido las siguientes:

<table>
<thead>
<tr>
<th>Año</th>
<th>Toneladas</th>
<th>% TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>2.339</td>
<td>51-52</td>
</tr>
<tr>
<td>1962</td>
<td>1.711</td>
<td>51-52</td>
</tr>
<tr>
<td>1963</td>
<td>1.463</td>
<td>51-52</td>
</tr>
<tr>
<td>1964</td>
<td>986</td>
<td>51-52</td>
</tr>
<tr>
<td>1965</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1966</td>
<td>10.121</td>
<td>51-52</td>
</tr>
<tr>
<td>1967</td>
<td>6.564</td>
<td>51-52</td>
</tr>
<tr>
<td>1968</td>
<td>11.334</td>
<td>51-52</td>
</tr>
</tbody>
</table>

3.1.1.1.3. Grupos Mineros de Tordoya y Erbecedo

La actividad minera más importante se desarrolló en las minas La Deseada y Antonio del primero grupo y Santo Tomas de Erbecedo. Se encuentran situadas en los términos de Tordoya, Coristanco y Carballo.

Yacimientos

Son depósitos de tipo coluvial y aluvial constituidos por la descomposición de gabros y anfibolitas del Macizo de Monte Castelo, con contenidos explotables de ilmenita. En Erbecedo, la ilmenita contiene del 3-4% de rutilio.
Minería

La explotación se llevaba a cabo mediante dragalinas de 250 l de capacidad.

Mineralurgia

El todo-uno se llevaba a un trómel clasificador con cribas de 4 mm. El tamaño superior iba a la escombrera y el inferior a una criba hidráulica que realizaba una depuración, obteniéndose un preconcentrado con el 34-36% de TiO₂. La capacidad de la planta era de 450 m³/d.

El preconcentrado se trasladaba a otra instalación donde era desenlodado mediante agua y bolas de hierro, pasando después a las mesas de refino, donde se obtenía un producto con el 48% en TiO₂. Como contenía tierras raras y arenas de circonio se pasaba a un horno de secado y a un vibro clasificador, continuando el proceso mediante una separadora electromagnética, obteniéndose un concentrado del 51-52% en TiO₂. La planta tenía una capacidad de tratamiento de 1.000 t/mes.

Producciones

Desde 1961 a 1969, año en que terminó la actividad, la producción total fue de 33.437 t distribuidas de la siguiente forma:
<table>
<thead>
<tr>
<th>Año</th>
<th>Concentrados de ilmenita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toneladas</td>
</tr>
<tr>
<td>1961</td>
<td>3.600</td>
</tr>
<tr>
<td>1962</td>
<td>4.900</td>
</tr>
<tr>
<td>1963</td>
<td>6.800</td>
</tr>
<tr>
<td>1964</td>
<td>5.400</td>
</tr>
<tr>
<td>1965</td>
<td>3.600</td>
</tr>
<tr>
<td>1966</td>
<td>2.700</td>
</tr>
<tr>
<td>1967</td>
<td>369</td>
</tr>
<tr>
<td>1968</td>
<td>2.500</td>
</tr>
<tr>
<td>1969</td>
<td>3.568</td>
</tr>
</tbody>
</table>

3.1.1.1.4. Pala Fracción 1ª

Se encuentra en el Valle del Dubra, tenía una superficie de 167 ha y el explotador fue D. Manuel Suarez Lago, manteniéndose en actividad desde 1963 a 1970.

Yacimientos

Depósito aluvionar formado por materiales anfibólicos y gabroides mezclado con arcillas con contenidos en ilmenita de interés.

Minería

La explotación se realizaba mediante tractores con scraper.

Mineralurgia

El material extraído se llevaba a un trómel clasificador con cribas de 2 mm, el superior a esta granulométrica iba directamente a escombrera y el menor pasaba a una criba hidráulica. La capacidad de tratamiento era de 50 t/d, obteniéndose un
preconcentrado del 34-36% que lo trataba A. Ferreiro para obtener un concentrado del 50-52% en TiO₂.

Producciones

Las producciones entre 1963 y 1969 fueron las siguientes:

<table>
<thead>
<tr>
<th>Año</th>
<th>Toneladas</th>
<th>% TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>261</td>
<td>34-36</td>
</tr>
<tr>
<td>1964</td>
<td>864</td>
<td>34-36</td>
</tr>
<tr>
<td>1965</td>
<td>1.311</td>
<td>34-36</td>
</tr>
<tr>
<td>1966</td>
<td>960</td>
<td>34-36</td>
</tr>
<tr>
<td>1967</td>
<td>764</td>
<td>34-36</td>
</tr>
<tr>
<td>1968</td>
<td>794</td>
<td>34-36</td>
</tr>
<tr>
<td>1969</td>
<td>1.315</td>
<td>34-36</td>
</tr>
</tbody>
</table>

FUENTE: Estadística Minera. Ministerio de Industria.

3.1.1.1.5. **Playa de Balares**

Se encuentra situada cerca del pueblo del mismo nombre a unos 10 km al oeste de Puente-Ceso.

Yacimientos

El yacimiento propiamente dicho está constituido por dos zonas: la playa en sentido estricto, con concentraciones naturales de hasta un 70% de minerales densos y las dunas del interior, bastante extensas, con una proporción del 3 al 5% de minerales densos. La mineralización es más regular en las dunas que en la playa. El mineral base es la ilmenita, presentándose también el granate, rutilo, circonv, monacita, casiterita y oro.
Historia minera

Hacia 1943, la empresa Titania, S.A. instaló una planta de concentración y tratamiento de arenas en dicha playa, con la idea de tratar no sólo éstas, sino también las de otros yacimientos próximos.

Minería

Para la extracción se utilizaba dragalina y/o scraper.

Mineralurgia

La planta de concentración y tratamiento estaba constituida por dos secciones. La primera constaba de una batería de seis mesas, cuyos concentrados pasaban a la sección magnética para la ulterior separación de sus componentes. Esta última sección constaba de secado, clasificación, separación primaria o de desbaste, mediante separadora de cilindros, y separación selectiva, utilizando una separadora de bandas cruzadas de ocho campos, que permitían la obtención de nueve productos de diferentes susceptibilidades.

La capacidad de tratamiento era de 4 k/h, tratándose de 5.000 a 10.000 t/a.

Producciones

Son escasos los datos de producción que se disponen, se sabe que en 1952 se obtuvieron casi 800 t de ilmenita.

3.1.1.1.6. Otros yacimientos

Existen otras zonas en las que se conoce la existencia de yacimientos impro ductivas, como son:
Entre estas dos poblaciones se conocen manifestaciones de titanio principalmente en Monte Neme, asociadas a anfibolitas, y en las rocas básicas enclavadas en los granitos de Monteagudo y Lendo.

En el km 4 de la carretera de Baldayo se encuentra la braña de Seijo, donde hace tiempo se realizaron trabajos para la extracción de ilmenita. No se conocen datos de producción, pero se aprecian importantes movimientos de tierra.

En las playas de Baldayo, Razo y Barraña, el titanio es un elemento frecuente en las arenas, sobre todo en las zonas que tienen drenaje de las corridas de gabros y anfibolitas. En la de Razo, la mineralización se presenta sobre una longitud de 2 km y mas de 200 m de ancho, apareciendo en sus arenas cantidades notables de W, Sn y Ti, procedentes seguramente de los diques de Monte Neme.

En las cercanías de Lema existen otros aluviones en los cuales la ilmenita suele ir acompañada de algo de estaño. El espesor del depósito es de unos 30 cm, apoyándose sobre granito alterado o sobre arcilla rojiza. La ilmenita parece proceder de un gabro titannífero que aflora al SO, donde existen vestigios de labores.

En el entorno de Payosaco hay tres vaguadas que fueron lavadas para extraer ilmenita, se encuentran cerca de las parroquias de Mirón, Esquipa y Cachada, esta última corresponde a la mina Midala. No existen datos de producción.

En el área de Moeche se encuentra la ilmenita asociada a rocas ultrabáscaras, con un contenido en mineral del 2%, pero los aluviones tienen muy poco volumen.

- 103 -
En la zona de Ortigueira aparece titanio tanto en masas aluvionares de ilmenita con rutilo, como minerales titanníferos diseminados en las rocas básicas y ultrabásicas del Complejo de Cabo Ortegal. Aunque existen áreas con contenidas superiores al 2%, desde el punto de vista económico solo cabe pensar como explotables las masas aluvionares, pero la ausencia de grandes volúmenes y leyes altas han impedido su explotación.

Zas-Pazos

Dentro de los términos de Zas, Bayo, Coristanco y Pazos aparece casi exclusivamente mineral de rutilo, sin apenas impurezas, al que acompaña limonita en cantidad del 6-7%. Se obtuvieron concentrados del 91-93% en TiO₂. En la laguna de Alcayan aparecía un mineral de ilmenita que contenía el 3-4% de rutilo con bastantes impurezas, que precisaba un tratamiento de separación electrostática y magnética junto con tostación para eliminar el azufre, obteniéndose un concentrado con mas del 94% en TiO₂.

3.1.1.2. Pontevedra-Orense

En la provincia de Pontevedra, dentro del término de Lalín, se encuentran rocas ácidas de tipo granítico que contienen titanio, pero en los aluviones producidos por la disgregación de los materiales no se encontró ilmenita.

En Orense son sumamente escasos los indicios de titanio, apareciendo junto al Sn y W en el área de Guinzo de Limia-Blancos.

3.1.2. OESTE

Dentro de esta zona se incluyen las manifestaciones de titanio existentes en las provincias de Zamora, Salamanca, Cáceres y Badajoz.
Solamente en Salamanca se tienen noticias de producción de titanio, 8 t en 1957 y 9 t en 1958. Se conoce la existencia de mineralizaciones de titanio asociadas a las de estaño en los aluviones procedentes de la denudación de rocas graníticas.

3.1.2.1. Zamora

Se conocen unos indicios de titanio en los términos de Ceadea y Fonfría, cerca de la frontera portuguesa.

La ilmenita se encuentra en unos aluviones procedentes del granito alcalino de dos micas existentes en la zona, aunque es probable que la mineralización primaria se encuentre junto a casiterita, magnetita titannífera y cuarzo. Los aluviones tienen una extensión de 2.500 m de longitud, 60 m de anchura y 2 m de potencia.

3.1.2.2. Salamanca

Las mineralizaciones de titanio se encuentran generalmente asociadas a las de estaño, principalmente en los términos de Golpejas, Fuentes de Oñoro y Puebla de Azaba.

Se desconoce de donde se extrajo la producción indicada por la Estadística Minera en 1957 y 1958, pero es previsible que se obtuviese como subproducto de la concentración de casiterita.

En los años sesenta se extrajo titanio de la mina Bellita, situada cerca de Golpejas. La mineralización, predominantemente casiterita y columbita-tantalita, aparece diseminada en microgranito albitico caolinizado. En estos últimos años se obtenía de ella casiterita y tantalita.

Cerca del pueblo de La Alamedilla, a unos 7 km al O de Puebla de Azaba, se encontraban las minas Fernando y Mª Luisa, denunciadas
por estaño e ilmenita. Es una zona de aluviones procedentes de la descomposición de un granito de dos micas de tipo alcalino.

A 2 km al SO de Puebla de Azaba, en el paraje denominado La Cuesta, se encuentra el Grupo minero La Insuperable. El yacimiento es un aluvión cuaternario con casiterita e ilmenita, de espesores variables, entre 0,30 m hasta un máximo de 5 m en algunas vaguadas, sin ningún tipo de recubrimiento, apoyado en arcillas. La mineralización está compuesta por un 80% de casiterita y 20% de ilmenita.

El material se extrae con palas cargadoras y se trata en una pequeña instalación de concentración dotada de vibroclasificadores, conos espesadores, mesas de sacudida y separador magnético, obteniéndose concentrados de casiterita y de ilmenita, almacenándose estos últimos por no existir comprador.

Al sur de Fuentes de Oñoro, en las inmediaciones de Arroyo del Fresno, Rivera del Campo y Rivera del Mimbre, está situada la mina Ana Mari. El yacimiento es de tipo aluvionar con escasa potencia y cuya mineralización es de ilmenita, casiterita, turmalina, apatito, circón, monacita, granate, rutilo, etc. Los aluviones se encuentran sobre granitos monzoníticos y sobre arenas y areniscas. El material tiene un contenido en minerales pesados del 1% del total. En los años sesenta producía algo de titanio, últimamente se extraía estaño de los aluviones y de unos filones que arman en granito y pizarras.

3.1.2.3. Cáceres

Las manifestaciones de titanio conocidas en esta provincia se encuentran situadas principalmente en la Sierra de Gata y cerca de Cáceres.

Desde antiguo se conoce la existencia de ilmenita en la Sierra. Es una formación granítica de tipo biotítico-muscovítico, en
la cual se encuentran gran número de filones cuarzosos con mineralizaciones de titanio, estaño, volframio, oro, etc. Así mismo, en los aluviones formados por las distintas cuencas hidrográficas de la zona se presenta la ilmenita. En la década de los años veinte se realizaron análisis de estos aluviones, cuyos resultados indicaban contenidos en ilmenita del 5%. Se desconoce si se explotaron.

En el término de Cáceres, capital, hay una serie de minas de estaño en las cuales el rutilo y/o la ilmenita van asociados a la casiterita.

El yacimiento de El Trasquilón o Grupo minero San Expedito, se encuentra 12 km al sur de la ciudad, en dirección a Mérida. El depósito es un stockwork, apareciendo la mineralización en filones cuarzosos, diseminada en el granito caolinitizado y en el aluvión circundante, que es el tipo de yacimiento más explotado. La paragénesis está constituida por casiterita y como minerales accesorios wolframita, amblygonita, apatito, rutilo, ilmenita y tantalita, entre otros.

Las minas Juanjo, La Quiniela, Rosarito y Sorteo, se encuentran a ambos lados de la carretera que se dirige a Valencia de Alcántara, entre los p.k. 3 y 5. La mineralización en estas minas se presenta de la misma forma que en El Trasquilón. Se están explotando en La Quiniela y Sorteo unos aluviones de 0,5 m a 1,5 m de espesor, de arenas cuarzosas con mineralización de casiterita e ilmenita y algo de wolframita. Las arenas se extraen con pala cargadora y se lavan en mesas de sacudida obteniendo un preconcentrado de casiterita e ilmenita, del que se elimina la última por separación magnética.

A través de los trabajos realizados por el IGME en los afloramientos graníticos de la provincia mediante prospección con la batea, aparecieron en muchas muestras contenidos interesantes de
titanio en las zonas de Gata, Granadilla, Talavera la Vieja, Plasencia, Valle del Tietar y Moraleja.

3.1.2.4. Badajoz

Cerca del pueblo de Valle de la Serena se encuentra la mina Mary. En ella se han lavado aluviones hasta 1977.

El yacimiento está formado por un conjunto de depósitos aluvionares cuaternarios con casiterita y pequeñas cantidades de ilmenita, wolframita y scheelita, formados por la erosión y desmantelamiento de rocas paleozoicas situadas al NE. Los aluviones son extensos y con espesores cercanos a 1 m.

En la mina Pepita, situada en los parajes El Berrocal y La Coscoja del término de Mérida, se explotaron aluviones procedentes del batolito granítico de El Berrocal, que contenían casiterita, wolframita e ilmenita.

Otros puntos de la provincia donde se ha detectado ilmenita son San Pedro de Mérida y Villanueva de la Serena.

3.1.3. ANDALUCIA

Dentro del conjunto de provincias andaluzas que se incluyen en esta zona, solamente Huelva ha tenido producción de ilmenita entre los años 1950-1966, según datos de la Estadística Minera. Se conocen diversos indicios en las provincias de Almería, Málaga y Córdoba.

3.1.3.1. Almería

Procedentes de la destrucción de vulcanitas de la zona aparecen depósitos costeros de ilmenita con magnetita en Cabo de Gata.
3.1.3.2. Málaga

Existen indicios de ilmenita en las calizas dolomíticas de la Serranía de Ronda y en los arenales costeros desde Punta Europa (Gibraltar) hasta Málaga, principalmente en su parte oriental, en los que la ilmenita va asociada con magnetita y cromita.

3.1.3.3. Sevilla

Se reconoció ilmenita en un aluvión al norte de la provincia que trató de explotarse como aurífero.

3.1.3.4. Córdoba

En los términos de Conquista y Torrecampo se han detectado indicios de ilmenita asociada a casiterita en depósitos aluvionares.

En el término de Conquista se encuentra la mina Cerro Gordo, cuya última etapa de actividad fue entre 1974 y 1979. El yacimiento está formado por un conjunto de depósitos eluviales y aluviales pliocuaternarios, constituidos por materiales detríticos con descomposición de los materiales graníticos del Batolito de los Pedroches, cerca del contacto con pizarras carboníferas. El yacimiento ocupa una superficie de cerca de 1 km² con espesores medios de 20 m.

En terrenos del término de Torrecampo, se encuentran depósitos eluviales y aluviales con casiterita, ilmenita y monacita.

3.1.3.5. Huelva

Esta provincia es la que muestra mayor importancia para el titanio dentro de la región andaluza y la segunda a nivel nacional, después de La Coruña. La ilmenita se encuentra generalmente
en las arenas de playa y menos veces en terrenos costeros del interior.

Contexto geológico

Dentro de esta zona se distinguen tres horizontes estratigráficos, Plio Villafranquiense, Cuaternario medio y Cuaternario reciente.

El Plio Villafranquiense posee una facies típicamente de arenas y gravas, algo arcillosas, alternando con capas de cantos rodados y otras más estrechas de conglomerados. El espesor del horizonte es variable, entre 10 y 30 m, aumentando en la zona sur, cerca del contacto de las marismas, donde alcanza los 100 m.

El Cuaternario medio está representado por una zona de dunas fósiles, que siguen una dirección sensiblemente paralela a la costa actual. Su espesor medio es aproximadamente de 25 m.

El Cuaternario reciente corresponde tanto a las playas como al cordón litoral de dunas. Estas últimas alcanzan en algunos puntos de la costa considerable altura y extensión.

Yacimientos

Los depósitos de esta provincia pertenecen, dentro de la tipología definida, al tipo C (placeres de playa). La ilmenita aparece tanto en los niveles del Plio Villafranquiense (0,3%), como en las capas superficiales de las playas (2,4%) y en las profundas (0,75%).

Dentro de las capas superficiales de las playas, que son las que presentan mayor interés, existen zonas donde la concentración es mayor, ya porque el oleaje del mar erosiona el escarpe Plio Villafranquiense, produciendo un nuevo aporte a la
concentración de ilmenita, o porque a este efecto del mar se añada el producido por algunas desembocaduras de arroyos.

3.1.3.5.1. Moguer-Almonte

Las explotaciones de ilmenita en estos dos términos se han concentrado en las playas de El Picacho, Mazagón, Torre de Oro y Asperillo y con menos interés en las arenas de Punta Umbría y La Antilla. En esta zona existieron varias minas, Pinta, Niña, Santa Ana, etc., las cuales cesaron sus actividades extractivas en 1966.

Minería

Las capas de ilmenita que se explotaron eran superficiales o recubiertas por arena estéril, con espesores de hasta 0,3 m. Para extraer el mineral se abrían manualmente calicatas o zanjas a lo largo de la playa y en los sitios donde está recubierta la ilmenita por arena estéril, se separaba ésta con rodos de madera hasta llegar a la capa negra, que una vez descubierta se iba extrayendo cuidadosamente hasta llegar al estéril inferior.

Mineralurgia

El mineral extraído era bastante impuro por lo que era preciso someterla a un proceso de concentración, lo cual era realizado en pequeñas plantas de concentración constituidas por varias mesas de sacudidas y separadores magnéticos, obteniéndose concentrados con leyes del 50-55% en TiO₂.

Producciones

Las producciones obtenidas entre los años 1957 y 1966, último de actividad, fueron las siguientes:
<table>
<thead>
<tr>
<th>Año</th>
<th>Concentrados de ilmenita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toneladas</td>
</tr>
<tr>
<td>1957</td>
<td>2.698</td>
</tr>
<tr>
<td>1958</td>
<td>3.082</td>
</tr>
<tr>
<td>1959</td>
<td>520</td>
</tr>
<tr>
<td>1960</td>
<td>69</td>
</tr>
<tr>
<td>1961</td>
<td>-</td>
</tr>
<tr>
<td>1962</td>
<td>515</td>
</tr>
<tr>
<td>1963</td>
<td>575</td>
</tr>
<tr>
<td>1964</td>
<td>760</td>
</tr>
<tr>
<td>1965</td>
<td>475</td>
</tr>
<tr>
<td>1966</td>
<td>620</td>
</tr>
</tbody>
</table>

3.1.4. RESTO DE ESPAÑA

En el resto de España las explotaciones de los minerales de titanio ha sido nula. Sin embargo se conocen manifestaciones titanníferas tanto asociadas a complejos básicos y a pegmatitas graníticas, como en aluviones procedentes de la denudación de estas rocas, y de arenas de playa. Estos indicios aparecen en varias provincias aunque nunca han tenido interés.

3.1.4.1. Cataluña

El titanio se ha puesto de manifiesto en diversos estudios geoquímicos realizados por el IGME en las redes de drenaje de los ríos Besós, Llobregat y en zonas costeras del litoral de Barcelona y Tarragona.

3.1.4.2. Guadalajara

En los yacimientos argentíferos de Hiendelaencina se han observado cristales de rutilo.
3.1.4.3. Asturias-León

Se ha observado la presencia de ilmenita en las arenas auríferas y en los cuarzos con oro de algunos depósitos de estas provincias.

3.1.4.4. Canarias

En Tenerife se tienen referencias de manifestaciones titanníferas en La Laguna.

3.1.4.5. Madrid

En los años sesenta existía en los términos de Galapagar y Las Rozas la mina Maruja, que producía algo de titanio.

El contexto geológico se caracteriza por las terrazas sedimentarias de materiales de denudación del macizo granítico de Guadarrama. Estas terrazas están surcadas por la red hidrográfica que ha dado lugar a unos aluviones, en ocasiones con potencias máximas de 20 m, en los que se realizó un laboreo para extraer la casiterita y la ilmenita que vienen asociadas.

Se han investigado los aluviones de la zona y se va a comenzar la explotación y la instalación de una planta de tratamiento con separación gravimétrica y procesos electrostáticos y electromagnéticos para obtener concentrados de casiterita, ilmenita, rutílio y otros minerales pesados.

Otros puntos de la provincia con indicios de titanio son Horcajo de la Sierra, Horcajuelo, Prádena del Rincón y Somosierra, en los que aparece rutílio.
3.2. PLANTAS DE ELABORACION Y TRANSFORMACION

En España, como en la mayoría de los países del mundo occidental, se sigue, en el proceso de utilización de los minerales de titanio, el esquema clásico ya reseñado (Fig. nº 7, pág. nº 34), con las peculiaridades derivadas de su condición de país no productor de estos materiales.

Así, por ejemplo, puede establecerse que no existe empleo directo del rutilo para la fabricación de soldaduras, recubrimientos, etc., empleándose en muy pequeñas ocasiones estos materiales de forma directa, por industrias de pigmentos o de ferroaleaciones.

Como norma general, los minerales de titanio son empleados para la fabricación de dióxido de titanio y éste es consumido, generalmente, para la fabricación de pigmentos o como blanqueante (cerámica, papel, etc.).

Las plantas dedicadas a la obtención de dióxido de titanio existentes en el país son dos:

- TIOXIDE ESPAÑOLA, S.A., que dispone de una planta en Huelva, y
- DOWN CHEMICAL IBERICA, S.A., cuya factoría se ubica en Axpe, Vizcaya.

A continuación se examina brevemente cada una de estas plantas industriales.

3.2.1. PLANTA DE TIOXIDE ESPAÑOLA, S.A., EN HUELVA

Entre 1972 y 1974, las empresas The Down Chemical Company, única productora de dióxido de titanio de España, a través de la factoría de Axpe, Erandio, en Vizcaya, de su filial Down Chemical
Ibérica, S.A. y Explosivos Río Tinto, S.A., crean la empresa Titanio, S.A., la cual se pretendía que pusiera a punto una planta de fabricación de TiO₂, aprovechando el exceso de SO₂H₂ producido por ERT, en el Polígono Industrial de Huelva.

Esta planta, en una primera fase tendría una capacidad de 50.000 t/año, ampliándose hasta alcanzar las 100.000 t/año, en una segunda fase, al término de la cual se cerraría la planta de Axpe.

En 1974, funcionaba ya la primera fase de 50.000 t/año en Palos de la Frontera (Huelva), pero diversos problemas habían cambiado la estructura empresarial que se repartía 45% Tioxide International, 55% ERT, manteniendo Down Chemical su independencia y su trabajo en Vizcaya.

Esta situación de estructura empresarial y de capacidad de producción se ha mantenido hasta 1984, en que la crisis económica de ERT alcanzó a Titanio, S.A., produciendo su cierre.

Posteriormente, el socio extranjero de la firma adquirió la mayoría en la empresa, cambiando incluso la denominación de la misma que pasó a llamarse Tioxide España, S.A.

Durante todo este periodo la factoría de Palos de la Frontera, Huelva, se ha mantenido en su capacidad inicial de 50.000 t/año, no existiendo, por el momento, ninguna intención de continuar con el proyecto de la segunda fase.

El proceso industrial seguido en esta planta es el clásico "de sulfatación" o de digestión de la ilmenita con ácido sulfúrico (ver fig. 9, pág. 46).

En esta planta se consiguen recuperar alrededor de 10.000 t/año de sulfato de hierro.
3.2.2. PLANTA DE DOWN CHEMICAL IBERICA, S.A. EN VIZCAYA

Esta planta, sita en Axpe-Erandio, en plena ría de Bilbao, ha sido la primera que se estableció en España, sufriendo diversas ampliaciones.

Esta factoría, que también trabaja mediante el proceso de sulfatación, fué establecida en 1962 con una capacidad de 7.500 t/año, pasando entre 1965 y 1969 a una capacidad de 13.000 t/año, y en 1970 alcanzó las 20.000 t/año. Posteriormente sufrió diversas ampliaciones a 22.000 t/año (año 1975) y 25.000 t/año en 1980. En la actualidad cuenta con 30.000 t/año, aún cuando raramente alcanza el 100% de su capacidad.

El desarrollo de esta fábrica se produjo después de que la empresa perdiera su participación en el antiguo Titanio, S.A., en la actualidad Tioxide España, S.A.

Las producciones obtenidas han oscilado entre el 80 y el 95% de la capacidad, para cada año.

- 116 -
3.3. DATOS ECONOMICOS

La industria del titanio en España se va a estudiar teniendo en cuenta los tres estadios contemplados en apartados anteriores: minería, fabricación de semielaborados y fabricación de productos terminados, entendiendo por tales los que demanda la industria fabricante de productos de consumo directo.

Se han descrito anteriormente los principales centros mineros, cerrados en la actualidad, así como las empresas que elaboran y transforman los concentrados.

A continuación se adjuntan estadísticas de aquellos datos económicos que van a permitir conocer la estructura y evolución del sector y el funcionamiento de su mercado, con el fin de llegar a extraer determinadas conclusiones sobre tendencias futuras.

3.3.1. PRODUCCION MINERA

En España existen recursos de titanio, tanto en yacimientos primarios como secundarios, aunque sólo estos últimos hayan sido objeto de explotación.

En la actualidad, todas las minas se encuentran inactivas, habiendo cesado las extracciones de rutilo a principios de la década de los sesenta y las de ilmenita en 1973.

En el cuadro 25 se refleja la evolución seguida por la producción minera nacional de titanio desde 1956, (entendiéndose por tal mineral la ilmenita). Observando la relación entre producción vendible y su contenido en TiO₂, se puede deducir que la ley media del mineral era relativamente baja y, en ningún caso, superior el 50%.

Este hecho se daba también en la minería del rutilo, por lo que, al elevarse drásticamente los costes de explotación, la
<table>
<thead>
<tr>
<th>AÑO</th>
<th>PROVINCIAS</th>
<th>MINERAL</th>
<th>PRODUCCION (t)</th>
<th>CONTENIDO (TiO2)</th>
<th>MILES DE PESETAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>3.712</td>
<td>1.913</td>
<td>3.712</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>1.697</td>
<td>743</td>
<td>1.697</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>5.409</td>
<td>2.656</td>
<td>5.409</td>
</tr>
<tr>
<td>1957</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>4.181</td>
<td>3.034</td>
<td>7.128</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>2.698</td>
<td>836</td>
<td>1.040</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>ILMENITA</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>8.587</td>
<td>3.958</td>
<td>8.217</td>
</tr>
<tr>
<td>1958</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>13.384</td>
<td>6.544</td>
<td>15.120</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>3.082</td>
<td>697</td>
<td>1.222</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>ILMENITA</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16.545</td>
<td>7.237</td>
<td>16.412</td>
</tr>
<tr>
<td>1959</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>6.530</td>
<td>3.332</td>
<td>5.881</td>
</tr>
<tr>
<td></td>
<td>LA CORUÑA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>265</td>
<td>120</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>43</td>
<td>22</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>1520</td>
<td>188</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>7.360</td>
<td>3.633</td>
<td>6.466</td>
</tr>
<tr>
<td>1960</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>6.874</td>
<td>3.437</td>
<td>4.711</td>
</tr>
<tr>
<td></td>
<td>LA CORUÑA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>1.814</td>
<td>1.891</td>
<td>2.396</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>350</td>
<td>175</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>69</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>11.128</td>
<td>5.454</td>
<td>7.352</td>
</tr>
<tr>
<td>1961</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>19.011</td>
<td>8.891</td>
<td>18.491</td>
</tr>
<tr>
<td></td>
<td>LA CORUÑA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>10.734</td>
<td>5.185</td>
<td>8.587</td>
</tr>
<tr>
<td></td>
<td>LA CORUÑA</td>
<td>COMPLEJOS VARIOS</td>
<td>355</td>
<td>177</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>30.104</td>
<td>14.225</td>
<td>27.366</td>
</tr>
<tr>
<td>1962</td>
<td>LA CORUÑA</td>
<td>ILMENITA</td>
<td>19.438</td>
<td>10.067</td>
<td>19.739</td>
</tr>
<tr>
<td></td>
<td>LA CORUÑA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>20.754</td>
<td>9.858</td>
<td>17.630</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>949</td>
<td>475</td>
<td>779</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>COMPLEJOS ESTARO/TITANIO</td>
<td>515</td>
<td>185</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>41.672</td>
<td>20.593</td>
<td>38.318</td>
</tr>
<tr>
<td>AÑOS</td>
<td>PROVINCIAS</td>
<td>MINERAL</td>
<td>PRODUCCION (t)</td>
<td>CONTENIDO (TiO2)</td>
<td>MILES DE PESETAS</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>LA CORUNA</td>
<td>COMPLEJOS ESTAÑO/TITANIO</td>
<td>28.690</td>
<td>13.648</td>
<td>20.118</td>
</tr>
<tr>
<td></td>
<td>LA CORUNA</td>
<td>COMPLEJOS VARIOS</td>
<td>220</td>
<td>110</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>575</td>
<td>297</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>SALAMANCA</td>
<td>COMPLEJOS ESTAÑO/TITANIO</td>
<td>23</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>56.571</td>
<td>24.829</td>
<td>37.449</td>
</tr>
<tr>
<td>1964</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>43.046</td>
<td>21.048</td>
<td>33.929</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>878</td>
<td>430</td>
<td>692</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>43.924</td>
<td>21.478</td>
<td>34.621</td>
</tr>
<tr>
<td></td>
<td>LA CORUNA</td>
<td>COMPLEJOS ESTAÑO/TITANIO</td>
<td>6,540</td>
<td>3.107</td>
<td>5.886</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>475</td>
<td>171</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>20.110</td>
<td>9.882</td>
<td>16.652</td>
</tr>
<tr>
<td>1966</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>24.664</td>
<td>12.325</td>
<td>20.531</td>
</tr>
<tr>
<td></td>
<td>LA CORUNA</td>
<td>COMPLEJOS ESTAÑO/TITANIO</td>
<td>19.918</td>
<td>9.473</td>
<td>17.942</td>
</tr>
<tr>
<td></td>
<td>HUELVA</td>
<td>ILMENITA</td>
<td>420</td>
<td>223</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>45.202</td>
<td>22.521</td>
<td>38.721</td>
</tr>
<tr>
<td>1967</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>37.072</td>
<td>18.188</td>
<td>33.141</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>37.072</td>
<td>18.188</td>
<td>33.141</td>
</tr>
<tr>
<td>1968</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>39.049</td>
<td>19.463</td>
<td>34.800</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>39.049</td>
<td>19.463</td>
<td>34.800</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>29.232</td>
<td>14.125</td>
<td>26.329</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>27.126</td>
<td>13.011</td>
<td>30.457</td>
</tr>
<tr>
<td>1971</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>24.349</td>
<td>11.455</td>
<td>30.235</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>24.349</td>
<td>11.455</td>
<td>30.235</td>
</tr>
<tr>
<td>1972</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>22.483</td>
<td>10.506</td>
<td>31.024</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>22.483</td>
<td>10.506</td>
<td>31.024</td>
</tr>
<tr>
<td>1973</td>
<td>LA CORUNA</td>
<td>ILMENITA</td>
<td>5.416</td>
<td>2.545</td>
<td>6.861</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>5.416</td>
<td>2.545</td>
<td>6.861</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: Estadística Minera de España
explotación de ambos minerales dejó de ser rentable y determinó el cese de ambos tipos de minería.

El rutilo dejó de explotarse en 1961 debido al motivo mencionado y a otras dos causas, externas al problema en sí, pero importantes en su efecto: la liberalización de la política comercial española, iniciada en 1959 y el fuerte descenso de las cotizaciones internacionales del mineral. Ambos hechos, junto a los factores ya expuestos de baja ley y altos costes de extracción, motivaron el hundimiento económico y subsiguiente cierre de las explotaciones existentes.

De forma similar aconteció con la ilmenita en época posterior. A los motivos ya mencionados de elevados costes y leyes relativamente bajas, se unió el descenso de los precios, derivado de la debilidad de la demanda de la industria consumidora, lo que originó el que los yacimientos existentes, todos ellos localizados en La Coruña, se convirtieran en subeconómicos, cesando en ese momento su explotación.

3.3.1.1. Producción de semielaborados

No existe en España producción de rutilo sintético ni de escorias o desperdicios de titanio y sí sólo de óxidos y dióxidos del mismo. En cuanto a estos últimos, aunque su producción alcanza cifras importantes, no se conocen con exactitud las correspondientes a óxidos y dióxidos y las de pigmentos a base de óxidos de titania, ya que, a nivel nacional no se publica estadísticas tan detalladas y las que suele publicar la "Industria Química en España" las ofrece conjuntamente desde 1977.

Según esta publicación, las cifras a partir de tal año son las siguientes (cuadro nº 26):

- 120 -
CUADRO 26

PRODUCCION NACIONAL DE DIOXIDO DE TITANIO

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>PRODUCCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>42.700 t</td>
</tr>
<tr>
<td>1978</td>
<td>53.900 t</td>
</tr>
<tr>
<td>1979</td>
<td>66.100 t</td>
</tr>
<tr>
<td>1980</td>
<td>51.434 t</td>
</tr>
<tr>
<td>1981</td>
<td>66.587 t</td>
</tr>
<tr>
<td>1982</td>
<td>67.494 t</td>
</tr>
<tr>
<td>1983</td>
<td>65.380 t</td>
</tr>
<tr>
<td>1984</td>
<td>....</td>
</tr>
<tr>
<td>1985</td>
<td>....</td>
</tr>
<tr>
<td>1986</td>
<td>....</td>
</tr>
<tr>
<td>1987</td>
<td>....</td>
</tr>
</tbody>
</table>

Según esta relación, la producción de estos materiales es creciente hasta 1982, si bien se desconoce su evolución a partir de tal fecha.

3.3.1.2. Producción metalúrgica

Como en casos anteriores, no existen datos fiables de esta producción que, en general, se considera nula para el titanio metal, tanto en esponja como en polvo o manufacturado y sólo se obtienen pequeñas cantidades de ferrotitánio y ferrosilicotitánio, pero también sin poder trabajar con cifras exactas.

En general, España no puede ser considerada como productora de estos materiales, teniendo que aportar todo lo necesario para abastecer su consumo.
3.3.2. COMERCIO EXTERIOR

Dentro del mercado del titanio, España es un país netamente importador, sin embargo, la situación no es la misma en todos los niveles de su industria, por lo que es necesario el análisis de sus cuadros de comercio exterior para tener una idea correcta de la situación real y tendencias del sector.

3.3.2.1. Comercio de minerales y concentrados

Con respecto al rutilo, puede observarse la evolución ascendente de las compras hasta 1977, fecha en que se inicia un fuerte y continuado descenso, que ha persistido hasta el momento actual y que ha mantenido el volumen total de importaciones en niveles similares a los del año de partida.

Este descenso estuvo originado por tres causas fundamentales:

- El alto precio alcanzado por el mineral
- El deterioro medioambiental al que daban lugar sus residuos
- La debilidad de la demanda de su principal industria consumidora: la de producción de pigmentos, motivada por un cambio en el proceso de obtención del TiO₂, que sustituyó el tradicional proceso de sulfatación que consumía rutilo, por el de cloración, que utilizaba rutilo sintético, fabricado a partir de la ilmenita.

Esto último queda contrastado al observar el cuadro que recoge las importaciones de ilmenita, donde se refleja la tendencia claramente creciente de las mismas.
CUADRO N° 27

IMPORTACIONES ESPAÑOLAS DE ILMENITA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>NORUEGA</td>
<td>12.576</td>
<td>30.235</td>
<td>30.251</td>
<td>43.682</td>
<td>76.482</td>
<td>54.776</td>
<td>65.905</td>
<td>71.256</td>
<td>63.779</td>
<td>68.986</td>
<td>64.363</td>
<td>69.923</td>
<td>72.342</td>
<td>48.852</td>
<td>58.769</td>
<td>57.882</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>FRANCIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.202</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ALEMANIA, R.F.</td>
<td>0.150</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>REINO UNIDO</td>
<td>0.136</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.907</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.500</td>
<td>-</td>
<td>0.004</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12.577</td>
<td>30.236</td>
<td>30.252</td>
<td>43.681</td>
<td>76.483</td>
<td>54.776</td>
<td>65.905</td>
<td>71.256</td>
<td>63.779</td>
<td>68.986</td>
<td>64.363</td>
<td>69.923</td>
<td>72.342</td>
<td>48.852</td>
<td>58.769</td>
<td>59.974</td>
<td>1.045</td>
<td>-</td>
</tr>
<tr>
<td>OCÉANIA</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>71</td>
<td>30</td>
<td>9.190</td>
<td>69</td>
<td>93</td>
<td>35</td>
<td>23.708</td>
<td>62.016</td>
<td>42.421</td>
<td>93.986</td>
<td>65.946</td>
<td>75.238</td>
<td>65.764</td>
<td>81.285</td>
<td>104.464</td>
<td>92.933</td>
<td>84.040</td>
<td>81.848</td>
</tr>
<tr>
<td>TOTAL</td>
<td>71</td>
<td>30</td>
<td>9.190</td>
<td>69</td>
<td>93</td>
<td>35</td>
<td>23.708</td>
<td>62.016</td>
<td>42.421</td>
<td>93.986</td>
<td>65.946</td>
<td>75.238</td>
<td>65.764</td>
<td>81.285</td>
<td>104.464</td>
<td>92.933</td>
<td>84.040</td>
<td>81.848</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
</tr>
<tr>
<td>SUDAFRICA</td>
<td>0.044</td>
<td>-</td>
<td>2.197</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.044</td>
<td>-</td>
<td>2.197</td>
<td></td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2.414</td>
<td>-</td>
</tr>
<tr>
<td>CANADA</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2.414</td>
<td>-</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>INDIA</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>15</td>
<td>20</td>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.947</td>
<td>-</td>
</tr>
<tr>
<td>MALASIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.589</td>
<td>0.098</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.067</td>
<td>36.145</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>15</td>
<td>20</td>
<td>38</td>
<td>12.589</td>
<td>0.098</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.947</td>
<td>19.067</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>12.648</td>
<td>30.268</td>
<td>39.468</td>
<td>43.766</td>
<td>76.596</td>
<td>54.851</td>
<td>101.302</td>
<td>133.272</td>
<td>106.200</td>
<td>162.977</td>
<td>134.920</td>
<td>145.166</td>
<td>138.016</td>
<td>130.137</td>
<td>185.060</td>
<td>186.184</td>
<td>104.152</td>
<td>133.841</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: Estadísticas de Comercio Exterior de España.
CUADRO N° 28

IMPORTACIONES ESPAGOLAS DE MINERALES DE TITANIO (RUTILÓ)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>Alemania R.F.</td>
<td>-</td>
<td>5</td>
<td>142</td>
<td>31</td>
<td>13</td>
<td>11</td>
<td>-</td>
<td>156</td>
<td>88</td>
<td>149</td>
<td>154</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bélgica</td>
<td>25</td>
<td>126</td>
<td>110</td>
<td>214</td>
<td>381</td>
<td>167</td>
<td>5</td>
<td>207</td>
<td>270</td>
<td>143</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Francia</td>
<td>-</td>
<td>41</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>Italia</td>
<td>-</td>
<td>0,200</td>
<td>0,850</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Países Bajos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>69</td>
<td>86</td>
<td>-</td>
<td>1</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reino Unido</td>
<td>23</td>
<td>11</td>
<td>95</td>
<td>-</td>
<td>15</td>
<td>100</td>
<td>20</td>
<td>75</td>
<td>480</td>
<td>776</td>
<td>846</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suecia</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>33</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>201</td>
<td>347</td>
<td>326</td>
<td>528</td>
<td>278</td>
<td>55</td>
<td>476</td>
<td>838</td>
<td>1.068</td>
<td>1.100</td>
<td>16</td>
<td>0,200</td>
<td>0,850</td>
<td>-</td>
<td>2</td>
<td>24</td>
<td>155</td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
</tr>
<tr>
<td>Sierra Leona</td>
<td>-</td>
</tr>
<tr>
<td>Rep. Sudáfrica</td>
<td>84</td>
<td>84</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>111</td>
<td>186</td>
<td>325</td>
<td>368</td>
<td>-</td>
<td>1.293</td>
<td>2.564</td>
<td>2.383</td>
<td>2.623</td>
<td>1.574</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>84</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>111</td>
<td>186</td>
<td>325</td>
<td>368</td>
<td>-</td>
<td>1.293</td>
<td>2.564</td>
<td>2.383</td>
<td>2.623</td>
<td>1.574</td>
<td></td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>EE.UU</td>
<td>190</td>
<td>153</td>
<td>110</td>
<td>500</td>
<td>609</td>
<td>462</td>
<td>160</td>
<td>649</td>
<td>690</td>
<td>937</td>
<td>556</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canadá</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94</td>
<td>94</td>
<td>-</td>
<td>3</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chile</td>
<td>-</td>
<td>15</td>
<td>39</td>
<td>176</td>
<td>189</td>
<td>117</td>
<td>197</td>
<td>327</td>
<td>509</td>
<td>106</td>
<td>194</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>190</td>
<td>168</td>
<td>149</td>
<td>676</td>
<td>892</td>
<td>579</td>
<td>360</td>
<td>976</td>
<td>1.239</td>
<td>1.083</td>
<td>780</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>Corea Sur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>10</td>
<td>-</td>
<td>162</td>
<td>54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japón</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>203</td>
<td>478</td>
<td>220</td>
<td>330</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>293</td>
<td>478</td>
<td>220</td>
<td>330</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Australia</td>
<td>879</td>
<td>786</td>
<td>4.990</td>
<td>4.788</td>
<td>5.012</td>
<td>5.801</td>
<td>5.265</td>
<td>4.669</td>
<td>4.532</td>
<td>2.326</td>
<td>2.027</td>
<td>1.137</td>
<td>319</td>
<td>288</td>
<td>141</td>
<td>48</td>
<td>119</td>
<td>271</td>
</tr>
<tr>
<td>Total</td>
<td>902</td>
<td>786</td>
<td>4.990</td>
<td>4.788</td>
<td>5.021</td>
<td>5.811</td>
<td>2.625</td>
<td>4.831</td>
<td>2.507</td>
<td>2.326</td>
<td>2.320</td>
<td>1.615</td>
<td>539</td>
<td>618</td>
<td>141</td>
<td>48</td>
<td>119</td>
<td>271</td>
</tr>
</tbody>
</table>

FUENTE: Estadística de comercio exterior de España

UNIDAD: Toneladas métricas

NOTA: Hasta 1976, la partida reflejada (26.01.44) hace mención al mineral de Ti, excepto la ilmenita, V, Mo y Ta. 1977, en su partida 26.01.48, incluye el mineral de Circionio. 1978, 79 y 80, excluyen en la partida 26.01.48 el tántalo. Por último, 1981, diferencia los distintos minerales, así la partida 26.01.84, recoge tan sólo el mineral de titanio, excepto ilmenita.
Sin embargo, no era esta sustitución el único motivo del incremento de las compras ya que, junto a él, incidían otros dos: el cese de la producción interna de ilmenita y la situación favorable del sector en general.

En el momento actual solo hay dos países suministradores de este material: Noruega y Australia, que aportan cada uno del 40% y el 60% respectivamente del consumo interior.

Con respecto al rutilo, nuestros principales abastecedores son Australia y la República de Sudáfrica, con un 4,5% y 95,5% respectivamente, del total importado.

De todo ello se infiere la total dependencia española frente al exterior, en lo que a estos minerales hace referencia.

No se puede hablar de exportación de minerales de titanio, ya que, de existir, se trata de reexportaciones y sus cifras son mínimas, por lo que ni siquiera se pretende recogerlas en cuadros.

3.3.2.2. Comercio de productos químicos de titanio

Se consideran como tales los óxidos y dióxidos de titanio y los óxidos para pigmentos.

Las cifras y tendencias del comercio de dichos productos quedan recogidos en los cuadros nºs 29, 30, 31 y 32.

En ellos se observa como cerca del 90% de las compras proceden de Europa, mientras que nuestras exportaciones son absorbidas por EE.UU. (50%), seguido de países europeos (30%), pertenecientes tanto al área de libre mercado como de economía centralizada.

En general, puede decirse que, con respecto a este tipo de productos nuestra Balanza Comercial es excedentaria.
CUADRO N° 29

IMPORTACIONES ESPAÑOLAS DE OXIDOS DE TITANIO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>ALEMANIA, R.F.</td>
<td>2.321</td>
<td>3.195</td>
<td>172</td>
<td>769</td>
<td>549</td>
<td>464</td>
<td>496</td>
<td>378</td>
<td>610</td>
<td>740</td>
<td>398</td>
<td>440</td>
<td>384</td>
<td>310</td>
<td>364</td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>515</td>
<td>444</td>
<td>190</td>
<td>73</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>54</td>
<td>234</td>
<td>90</td>
<td>74</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>1.745</td>
<td>978</td>
<td>529</td>
<td>453</td>
<td>443</td>
<td>479</td>
<td>516</td>
<td>342</td>
<td>613</td>
<td>492</td>
<td>313</td>
<td>259</td>
<td>270</td>
<td>283</td>
<td>483</td>
</tr>
<tr>
<td>ITALIA</td>
<td>1.370</td>
<td>504</td>
<td>129</td>
<td>32</td>
<td>114</td>
<td>5</td>
<td>66</td>
<td>444</td>
<td>302</td>
<td>334</td>
<td>71</td>
<td>6</td>
<td>-</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>NORUEGA</td>
<td>107</td>
<td>-</td>
</tr>
<tr>
<td>PAISES BAJOS</td>
<td>20</td>
<td>30</td>
<td>44</td>
<td>20</td>
<td>0.5</td>
<td>0.380</td>
<td>54</td>
<td>0.450</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>REINO UNIDO</td>
<td>395</td>
<td>358</td>
<td>176</td>
<td>162</td>
<td>13</td>
<td>92</td>
<td>22</td>
<td>151</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>216</td>
<td>438</td>
</tr>
<tr>
<td>SUIZA</td>
<td>1</td>
<td>5</td>
<td>0.500</td>
<td>-</td>
</tr>
<tr>
<td>CHECOSLOVAQUIA</td>
<td>190</td>
<td>262</td>
<td>60</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BELGICA</td>
<td>246</td>
<td>261</td>
<td>349</td>
<td>46</td>
<td>198</td>
<td>390</td>
<td>678</td>
<td>1.041</td>
<td>780</td>
<td>2.870</td>
<td>589</td>
<td>270</td>
<td>280</td>
<td>234</td>
<td>354</td>
</tr>
<tr>
<td>SUECIA</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td>51</td>
<td>132</td>
<td>10</td>
<td>54</td>
<td>66</td>
<td>333</td>
<td>242</td>
<td>137</td>
<td>137</td>
<td>55</td>
<td>22</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>CANADA</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.200</td>
<td>0.854</td>
<td>0.501</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51</td>
<td>140</td>
<td>10</td>
<td>54</td>
<td>66</td>
<td>333</td>
<td>243</td>
<td>138</td>
<td>138</td>
<td>56</td>
<td>23</td>
<td>4</td>
<td>31</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>JAPON</td>
<td>147</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>15</td>
<td>21</td>
<td>36</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>-</td>
<td>40</td>
<td>120</td>
</tr>
<tr>
<td>CHINA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>178</td>
<td>337</td>
</tr>
<tr>
<td>TOTAL</td>
<td>147</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>15</td>
<td>21</td>
<td>85</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>218</td>
<td>457</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: Estadísticas de Comercio Exterior de España
CUADRO N° 30

IMPORTACIONES ESPAÑOLES DE PIGMENTOS A BASE DE OXIDOS DE TITANIO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>BELGICA</td>
<td>110</td>
<td>183</td>
<td>530</td>
<td>710</td>
<td>868</td>
<td>1.084</td>
<td>1.042</td>
<td>1.120</td>
<td>557</td>
<td>925</td>
<td>1.662</td>
</tr>
<tr>
<td>DINAMARCA</td>
<td>-</td>
<td>0.750</td>
<td>1</td>
<td>0.704</td>
<td>-</td>
<td>0.504</td>
<td>-</td>
<td>-</td>
<td>0.500</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>FINLANDIA</td>
<td>16</td>
<td>74</td>
<td>52</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>897</td>
<td>417</td>
<td>120</td>
<td>552</td>
<td>820</td>
<td>1.005</td>
<td>786</td>
<td>309</td>
<td>546</td>
<td>1.440</td>
<td>1.318</td>
</tr>
<tr>
<td>ITALIA</td>
<td>288</td>
<td>192</td>
<td>179</td>
<td>79</td>
<td>76</td>
<td>80</td>
<td>236</td>
<td>79</td>
<td>44</td>
<td>71</td>
<td>241</td>
</tr>
<tr>
<td>NORUEGA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>141</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>178</td>
</tr>
<tr>
<td>PAISES BAJOS</td>
<td>22</td>
<td>44</td>
<td>24</td>
<td>44</td>
<td>405</td>
<td>379</td>
<td>1.584</td>
<td>1.716</td>
<td>2.108</td>
<td>2.154</td>
<td>1.163</td>
</tr>
<tr>
<td>REINO UNIDO</td>
<td>818</td>
<td>289</td>
<td>223</td>
<td>86</td>
<td>135</td>
<td>-</td>
<td>167</td>
<td>127</td>
<td>114</td>
<td>199</td>
<td>81</td>
</tr>
<tr>
<td>SUIZA</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0.054</td>
<td>0.060</td>
<td>0.504</td>
<td>0.030</td>
<td>0.110</td>
<td>0.676</td>
<td>0.875</td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td>8</td>
<td>17</td>
<td>201</td>
<td>132</td>
<td>626</td>
<td>1.240</td>
<td>1.788</td>
<td>1.581</td>
<td>1.305</td>
<td>1.079</td>
<td>1.090</td>
</tr>
<tr>
<td>CANADA</td>
<td>-</td>
<td>0.023</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEJICO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>115</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>8</td>
<td>17</td>
<td>201</td>
<td>132</td>
<td>631</td>
<td>1.241</td>
<td>1.824</td>
<td>1.581</td>
<td>1.305</td>
<td>1.194</td>
<td>1.113</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>KUWAIT</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JAPON</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: Estadísticas de Comercio Exterior de España
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
</tr>
<tr>
<td>ALEMANIA, R.F.</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>BELGICA</td>
<td>105</td>
<td>125</td>
<td>155</td>
<td>185</td>
<td>215</td>
<td>245</td>
<td>275</td>
<td>305</td>
<td>335</td>
<td>365</td>
<td>395</td>
<td>425</td>
<td>455</td>
<td>485</td>
<td>515</td>
<td>545</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
<td>220</td>
<td>240</td>
<td>260</td>
<td>280</td>
<td>300</td>
<td>320</td>
<td>340</td>
<td>360</td>
<td>380</td>
<td>400</td>
<td>420</td>
<td>440</td>
</tr>
<tr>
<td>GRIECIA</td>
<td>245</td>
<td>265</td>
<td>285</td>
<td>305</td>
<td>325</td>
<td>345</td>
<td>365</td>
<td>385</td>
<td>405</td>
<td>425</td>
<td>445</td>
<td>465</td>
<td>485</td>
<td>505</td>
<td>525</td>
<td>545</td>
</tr>
<tr>
<td>ITALIA</td>
<td></td>
</tr>
<tr>
<td>N OR OREG E</td>
<td></td>
</tr>
<tr>
<td>P AISES BAJOS</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>850</td>
<td>900</td>
<td>950</td>
<td>1000</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td></td>
</tr>
<tr>
<td>REINO UNIDO</td>
<td></td>
</tr>
<tr>
<td>SUECIA</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
</tr>
<tr>
<td>SUIZA</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
</tr>
<tr>
<td>COSTA RICA</td>
<td></td>
</tr>
<tr>
<td>ECUADOR</td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td></td>
</tr>
<tr>
<td>MEXICO</td>
<td></td>
</tr>
<tr>
<td>NORUEGA</td>
<td></td>
</tr>
<tr>
<td>SUECIA</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>AFRICA</td>
<td></td>
</tr>
<tr>
<td>ANCE</td>
<td></td>
</tr>
<tr>
<td>EGIPTO</td>
<td></td>
</tr>
<tr>
<td>Kurdia</td>
<td></td>
</tr>
<tr>
<td>LIBIA</td>
<td></td>
</tr>
<tr>
<td>MAROCCO</td>
<td></td>
</tr>
<tr>
<td>MALI</td>
<td></td>
</tr>
<tr>
<td>MARRUECOS</td>
<td></td>
</tr>
<tr>
<td>NIGERIA</td>
<td></td>
</tr>
<tr>
<td>SUDAFRICA</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>CHINA</td>
<td></td>
</tr>
<tr>
<td>ARABIA SAUDITA</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td></td>
</tr>
<tr>
<td>CIRIA DEL NORTE</td>
<td></td>
</tr>
<tr>
<td>CIRIA DEL SUR</td>
<td></td>
</tr>
<tr>
<td>FILIPINAS</td>
<td></td>
</tr>
<tr>
<td>HINDIA</td>
<td></td>
</tr>
<tr>
<td>IRAK</td>
<td></td>
</tr>
<tr>
<td>ISRAEL</td>
<td></td>
</tr>
<tr>
<td>JORDANIA</td>
<td></td>
</tr>
<tr>
<td>MALASIA</td>
<td></td>
</tr>
<tr>
<td>SINGAPUR</td>
<td></td>
</tr>
<tr>
<td>Tailandia</td>
<td></td>
</tr>
<tr>
<td>TANZANIA</td>
<td></td>
</tr>
<tr>
<td>PAKISTAN</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>2.345</td>
<td>2.248</td>
<td>2.159</td>
<td>2.070</td>
<td>1.981</td>
<td>1.892</td>
<td>1.803</td>
<td>1.714</td>
<td>1.625</td>
<td>1.536</td>
<td>1.447</td>
<td>1.358</td>
<td>1.269</td>
<td>1.180</td>
<td>1.091</td>
<td>1.002</td>
</tr>
</tbody>
</table>

CUADRO N° 11

EXPORTACIONES ESPAÑOLAS DE RIO TINTO

UNIDAD: Tonneles
CUADRO N° 32

EXPORTACIONES ESPAÑOLAS DE PIGMENTOS A BASE DE OXIDOS DE TITANIO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGELIA</td>
<td>100</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>330</td>
<td>1.000</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>ANGOLA</td>
<td>-</td>
</tr>
<tr>
<td>EGIPTO</td>
<td>25</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>131</td>
<td>468</td>
<td>350</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>LIBIA</td>
<td>185</td>
<td>270</td>
<td>125</td>
<td>699</td>
<td>600</td>
<td>240</td>
<td>970</td>
<td>450</td>
<td>550</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>MARRUECOS</td>
<td>150</td>
<td>166</td>
<td>171</td>
<td>108</td>
<td>306</td>
<td>19</td>
<td>190</td>
<td>108</td>
<td>158</td>
<td>158</td>
<td>158</td>
</tr>
<tr>
<td>NIGERIA</td>
<td>-</td>
</tr>
<tr>
<td>SUDÁFRICA</td>
<td>-</td>
<td>-</td>
<td>108</td>
<td>199</td>
<td>357</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TÚNEZ</td>
<td>95</td>
<td>80</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>51</td>
<td>56</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>ZAMBIA</td>
<td>41</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>596</td>
<td>731</td>
<td>320</td>
<td>918</td>
<td>892</td>
<td>1.516</td>
<td>2.999</td>
<td>1.379</td>
<td>2.040</td>
<td>203</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADA</td>
<td>65</td>
<td>146</td>
<td>5</td>
<td>290</td>
<td>454</td>
<td>217</td>
<td>811</td>
<td>80</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>BRASIL</td>
<td>79</td>
<td>95</td>
<td>359</td>
<td>262</td>
<td>322</td>
<td>110</td>
<td>200</td>
<td>400</td>
<td>347</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>BOLIVIA</td>
<td>70</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COLOMBIA</td>
<td>51</td>
<td>337</td>
<td>802</td>
<td>680</td>
<td>1.009</td>
<td>1.338</td>
<td>638</td>
<td>1.617</td>
<td>1.386</td>
<td>1.415</td>
<td>1.393</td>
</tr>
<tr>
<td>CUBA</td>
<td>126</td>
<td>40</td>
<td>28</td>
<td>276</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COSTA RICA</td>
<td>95</td>
<td>140</td>
<td>110</td>
<td>50</td>
<td>20</td>
<td>5</td>
<td>17</td>
<td>105</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>CHILE</td>
<td>226</td>
<td>559</td>
<td>752</td>
<td>35</td>
<td>120</td>
<td>27</td>
<td>189</td>
<td>42</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>250</td>
<td>1.147</td>
<td>1.671</td>
<td>963</td>
<td>253</td>
<td>1.326</td>
<td>1.338</td>
<td>812</td>
<td>220</td>
<td>184</td>
<td>204</td>
</tr>
<tr>
<td>R. DOMINICANA</td>
<td>512</td>
<td>209</td>
<td>544</td>
<td>60</td>
<td>122</td>
<td>201</td>
<td>102</td>
<td>418</td>
<td>70</td>
<td>148</td>
<td>15</td>
</tr>
<tr>
<td>ECUADOR</td>
<td>15</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HONDURAS</td>
<td>54</td>
<td>123</td>
<td>351</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EL SALVADOR</td>
<td>-</td>
</tr>
<tr>
<td>NICARAGUA</td>
<td>-</td>
<td>116</td>
<td>63</td>
<td>-</td>
<td>20</td>
<td>50</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>HAITI</td>
<td>-</td>
<td>110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PANAMA</td>
<td>5</td>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GUATEMALA</td>
<td>35</td>
<td>99</td>
<td>52</td>
<td>5</td>
<td>18</td>
<td>10</td>
<td>20</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PERÚ</td>
<td>-</td>
<td>455</td>
<td>10</td>
<td>-</td>
<td>0.001</td>
<td>255</td>
<td>422</td>
<td>482</td>
<td>145</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td>529</td>
<td>347</td>
<td>484</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VENEZUELA</td>
<td>507</td>
<td>857</td>
<td>498</td>
<td>489</td>
<td>1.358</td>
<td>1.442</td>
<td>1.451</td>
<td>1.306</td>
<td>1.389</td>
<td>1.107</td>
<td>456</td>
</tr>
<tr>
<td>URUGUAY</td>
<td>70</td>
<td>92</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIPRE</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IRAQ</td>
<td>156</td>
<td>-</td>
<td>1.513</td>
<td>216</td>
<td>666</td>
<td>108</td>
<td>36</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IRAN</td>
<td>610</td>
<td>120</td>
<td>-</td>
<td>772</td>
<td>522</td>
<td>920</td>
<td>378</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>303</td>
<td>846</td>
<td>548</td>
<td>198</td>
<td>258</td>
<td>0.260</td>
<td>38</td>
<td>0.004</td>
<td>41</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>INDIA</td>
<td>120</td>
<td>180</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JORDANIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>108</td>
<td>0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CHINA</td>
<td>-</td>
<td>18</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ARABIA SAUDI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>154</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EIRMAT.ARA.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>180</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KUWAIT</td>
<td>-</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SRI LANKA</td>
<td>20</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HONG KONG</td>
<td>18</td>
<td>111</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JAPON</td>
<td>-</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FILIPINAS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>70</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| TOTAL | 1.424 | 1.170 | 2.146 | 1.486 | 3.016 | 2.152 | 1.275 | 1.040 | 718 | 72 | 19 |

UNIDAD: Toneladas **FUENTE:** Estadísticas del Comercio Exterior de España (Ministerio de Hacienda)**
Sin embargo, hay que distinguir entre óxidos y dióxidos y pigmentos a base de óxidos de titanio.

Algo similar ocurre con los pigmentos, en los que las compras siguen una evolución claramente creciente, similar a sus ventas, pero, también en 1986, el descenso de las exportaciones es muy significativo.

3.3.2.3. Comercio de titanio metal

Este estadio de nuestra industria es indiscutiblemente deficitario para España.

Sólo se analiza su evolución desde 1981, primer año en que las partidas arancelarias vienen desglosadas y únicamente en lo que se refiere a compras, pues las ventas son inexistentes.

Un estudio de los cuadros 33 y 34, permite apreciar el volumen creciente de las importaciones, tanto de titanio en bruto como del manufacturado.

3.3.2.4. Comercio de ferroaleaciones de titanio

La Balanza Comercial del ferrotitanio y ferrosilicotitanio ha sido tradicionalmente deficitaria para España, únicamente 1986 ha tenido un resultado favorable, aunque en cifras no demasiado importantes. (Cuadros 35 y 36)
CUADRO 33

IMPORTACIONES ESPAÑOLAS DE TITANIO EN BRUTO EN POLVO

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemania, R.F.</td>
<td>12</td>
<td>15</td>
<td>76</td>
<td>41</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Francia</td>
<td>-</td>
<td>3</td>
<td>65</td>
<td>351</td>
<td>193</td>
<td>247</td>
<td>184</td>
</tr>
<tr>
<td>Italia</td>
<td>0,100</td>
<td>0,720</td>
<td>0,720</td>
<td>1</td>
<td>148</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Suecia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reino Unido</td>
<td>0,003</td>
<td>21</td>
<td>32</td>
<td>8</td>
<td>169</td>
<td>71</td>
<td>0,500</td>
</tr>
<tr>
<td>Países Bajos</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Austria</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>69</td>
<td>3</td>
</tr>
<tr>
<td>EE.UU</td>
<td>108</td>
<td>144</td>
<td>241</td>
<td>141</td>
<td>266</td>
<td>297</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>121</td>
<td>193</td>
<td>415</td>
<td>588</td>
<td>815</td>
<td>685</td>
<td>218</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: Estadísticas del "Comercio Exterior de España"
CUADRO 34

(1) IMPORTACIONES ESPAÑOLAS DE TITANIO MANUFACTURADO

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemania</td>
<td>9</td>
<td>5</td>
<td>215</td>
<td>326</td>
<td>3,656</td>
<td>202</td>
<td>10,102</td>
</tr>
<tr>
<td>Bélgica</td>
<td>1</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>0,020</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Francia</td>
<td>4</td>
<td>988</td>
<td>536</td>
<td>1,546</td>
<td>2,021</td>
<td>212</td>
<td>9,198</td>
</tr>
<tr>
<td>Austria</td>
<td>-</td>
<td>-</td>
<td>0,115</td>
<td>-</td>
<td>-</td>
<td>0,096</td>
<td>-</td>
</tr>
<tr>
<td>Italia</td>
<td>21</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>58,150</td>
<td>90</td>
<td>102,192</td>
</tr>
<tr>
<td>Suecia</td>
<td>0,5</td>
<td>1</td>
<td>0,030</td>
<td>0,480</td>
<td>0,432</td>
<td>0,009</td>
<td>0,001</td>
</tr>
<tr>
<td>Suiza</td>
<td>0,001</td>
<td>0,002</td>
<td>0,006</td>
<td>0,001</td>
<td>0,004</td>
<td>0,001</td>
<td>0,307</td>
</tr>
<tr>
<td>Países Bajos</td>
<td>0,006</td>
<td>0,007</td>
<td>0,003</td>
<td>-</td>
<td>0,014</td>
<td>2,086</td>
<td>0,065</td>
</tr>
<tr>
<td>Reino Unido</td>
<td>1</td>
<td>16</td>
<td>9</td>
<td>20</td>
<td>20</td>
<td>393</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>1.046</td>
<td>813</td>
<td>378</td>
<td>85</td>
<td>904</td>
<td>163</td>
</tr>
<tr>
<td>AMERICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE.UU.</td>
<td>106</td>
<td>167</td>
<td>118</td>
<td>0,668</td>
<td>218,4</td>
<td>178</td>
<td>75,52</td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japón</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>37,702</td>
</tr>
<tr>
<td>TOTAL MUNDIAL</td>
<td>145</td>
<td>1.219</td>
<td>935</td>
<td>382</td>
<td>306</td>
<td>1.094</td>
<td>276</td>
</tr>
</tbody>
</table>

(1) : Dentro de las manufacturas se engloban: chapas, hojas y tiras, barras, perfiles y alambres, tubos y todas las demás manufacturas.
UNIDAD: Tm
FUENTE: Elaboración propia a partir de la "Estadística del Comercio Exterior de España"
CUADRO N° 35

Importaciones Españolas de Ferrotitano y Ferrosilicotitano (1)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEMANIA, R.F.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41</td>
<td>30</td>
<td>20</td>
<td>93</td>
<td>0.076</td>
<td>0.002</td>
<td>0.249</td>
<td>2</td>
<td>0.134</td>
<td>0.081</td>
<td>0.118</td>
<td>-</td>
</tr>
<tr>
<td>BELGICA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>102</td>
<td>-</td>
</tr>
<tr>
<td>FRANCIA</td>
<td>224</td>
<td>223</td>
<td>132</td>
<td>72</td>
<td>143</td>
<td>42</td>
<td>16</td>
<td>26</td>
<td>40</td>
<td>32</td>
<td>22</td>
<td>27</td>
<td>5</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>ITALIA</td>
<td>70</td>
<td>23</td>
<td>70</td>
<td>32</td>
<td>10</td>
<td>34</td>
<td>75</td>
<td>64</td>
<td>40</td>
<td>10</td>
<td>-</td>
<td>21</td>
<td>18</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>PAISES BAJOS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,600</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REINO UNIDO</td>
<td>183</td>
<td>125</td>
<td>225</td>
<td>160</td>
<td>79</td>
<td>236</td>
<td>275</td>
<td>206</td>
<td>77</td>
<td>98</td>
<td>137</td>
<td>55</td>
<td>39</td>
<td>152</td>
<td>172</td>
</tr>
<tr>
<td>SUECIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>62</td>
<td>58</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U.R.S.S.</td>
<td>-</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EE.UU.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JAPON</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>NORUEGA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

Total

| | 477 | 470 | 427 | 355 | 288 | 497 | 673 | 318 | 137 | 190 | 171 | 139 | 65 | 199 | 226 |

Unidad: Toneladas

Fuente: Estadísticas del Comercio Exterior de España

(1) Hasta 1980: Comprende cifras conjuntas de ferrotitano y ferrosilicotitano, apareciendo ya desglosadas en 1981. Sin embargo, las cifras de este último producto son tan insignificantes, que no merece la pena tenerlas en cuenta.
CUADRO N° 36

EXPORTACIONES ESPAÑOLAS DE FERROTITANIO Y FERROSILICOTITANIO (1)

<table>
<thead>
<tr>
<th>ALEMANIA, R.F.</th>
<th>PORTUGAL</th>
<th>REINO UNIDO</th>
<th>FRANCIA</th>
<th>ARGENTINA</th>
<th>VENEZUELA</th>
<th>RUMANIA</th>
<th>U.R.S.S.</th>
<th>PAISES BAJOS</th>
<th>SUIZA</th>
<th>COREA DEL SUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>14</td>
<td>20</td>
<td>1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0.035</td>
<td>20</td>
<td>-</td>
<td>200</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.270</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>220</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>20</td>
<td>18</td>
<td>0.300</td>
<td>16</td>
<td>14</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>249</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas
FUENTE: Estadísticas de Comercio Exterior de España
(1): Hasta 1980 comprende cifras conjuntas de ferrotitano y ferrosilicotitano, apareciendo desglosadas a partir de 1981. Sin embargo, las cifras de este último producto son tan insignificantes que no merece la pena tenerlas en cuenta.
<table>
<thead>
<tr>
<th>Año</th>
<th>Consumo (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>40.975</td>
</tr>
<tr>
<td>1971</td>
<td>55.850</td>
</tr>
<tr>
<td>1972</td>
<td>67.420</td>
</tr>
<tr>
<td>1973</td>
<td>54.939</td>
</tr>
<tr>
<td>1974</td>
<td>82.630</td>
</tr>
<tr>
<td>1975</td>
<td>61.423</td>
</tr>
<tr>
<td>1976</td>
<td>104.323</td>
</tr>
<tr>
<td>1977</td>
<td>139.604</td>
</tr>
<tr>
<td>1978</td>
<td>110.965</td>
</tr>
<tr>
<td>1979</td>
<td>167.739</td>
</tr>
<tr>
<td>1980</td>
<td>139.487</td>
</tr>
<tr>
<td>1981</td>
<td>146.797</td>
</tr>
<tr>
<td>1982</td>
<td>138.555</td>
</tr>
<tr>
<td>1983</td>
<td>132.049</td>
</tr>
<tr>
<td>1984</td>
<td>187.722</td>
</tr>
<tr>
<td>1985</td>
<td>188.617</td>
</tr>
<tr>
<td>1986</td>
<td>106.918</td>
</tr>
<tr>
<td>1987</td>
<td>135.940</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia a partir de la Estadística Minera de España y Estadística del Comercio Exterior de España

UNIDAD: Toneladas métricas

(1) Se consideran incluidas las compras y ventas de ilmenita, anatasa y rutilo

Como se ve, la tendencia del consumo de minerales es claramente ascendente, con fuertes incrementos en 1984 y 1985 y con un importante retroceso en 1986, cambios correlativos con la marcha de la producción española de óxidos de titanio, cuyos volúmenes de producción siguen la misma tónica y, como consecuencia, también aumentan y descienden las ventas al exterior en tales momentos.
Las cifras de consumo de óxidos y dióxidos de este mineral, habrá que obtenerlas en su conjunto, ya que, como se ha visto, no hay cifras diferenciadas según los destinos finales (metalúrgico o químico) y se reflejarían en el cuadro siguiente:

CUADRO 38

CONSUMO APARENTE DE OXIDOS DE TITANIO (1)

<table>
<thead>
<tr>
<th>AÑOS</th>
<th>PRODUCCION</th>
<th>IMPORTACIONES</th>
<th>EXPORTACIONES</th>
<th>CONSUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>47.200</td>
<td>3.958</td>
<td>16.091</td>
<td>35.067</td>
</tr>
<tr>
<td>1978</td>
<td>53.900</td>
<td>4.582</td>
<td>27.745</td>
<td>30.737</td>
</tr>
<tr>
<td>1979</td>
<td>66.100</td>
<td>6.747</td>
<td>39.524</td>
<td>33.323</td>
</tr>
<tr>
<td>1980</td>
<td>51.434</td>
<td>7.899</td>
<td>27.066</td>
<td>32.267</td>
</tr>
<tr>
<td>1981</td>
<td>66.587</td>
<td>10.177</td>
<td>29.345</td>
<td>47.419</td>
</tr>
<tr>
<td>1982</td>
<td>67.494</td>
<td>12.656</td>
<td>44.988</td>
<td>35.162</td>
</tr>
<tr>
<td>1983</td>
<td>65.380</td>
<td>11.604</td>
<td>39.110</td>
<td>37.874</td>
</tr>
<tr>
<td>1984</td>
<td>....</td>
<td>10.616</td>
<td>46.801</td>
<td>....</td>
</tr>
<tr>
<td>1985</td>
<td>....</td>
<td>10.415</td>
<td>39.928</td>
<td>....</td>
</tr>
<tr>
<td>1986</td>
<td>....</td>
<td>12.767</td>
<td>24.092</td>
<td>....</td>
</tr>
<tr>
<td>1987</td>
<td>....</td>
<td>13.823</td>
<td>26.728</td>
<td>....</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas métricas

FUENTE: Elaboración propia a partir de "Industria Química en España" y Estadísticas de Comercio Exterior

(1): Comprende los óxidos de titanio y los pigmentos en base a óxidos de titanio

.... : No existen datos

De acuerdo con lo observado, el consumo de óxidos se mantiene bastante estable, utilizándose más del 70% en la producción de pigmentos.

Con respecto al resto de los productos terminados, ya se ha dicho que la producción interna de los mismos podría considerarse...
nula, por lo que estableciendo el consumo aparente como diferencia entre importaciones y exportaciones, éste quedaría así reflejado:

CUADRO 39

CONSUMO DE TITANIO METAL (1)

<table>
<thead>
<tr>
<th>Año</th>
<th>Importación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1.779 t</td>
</tr>
<tr>
<td>1982</td>
<td>1.417 t</td>
</tr>
<tr>
<td>1983</td>
<td>1.350 t</td>
</tr>
<tr>
<td>1984</td>
<td>970 t</td>
</tr>
<tr>
<td>1985</td>
<td>1.121 t</td>
</tr>
<tr>
<td>1986</td>
<td>1.779 t</td>
</tr>
<tr>
<td>1987</td>
<td>494 t</td>
</tr>
</tbody>
</table>

UNIDAD: Toneladas métricas

FUENTE: Elaboración propia a partir de Estadísticas del Comercio Exterior de España

(1): Comprende titanio en bruto y manufacturado

A la vista de la escasez de información estadística existente, más que hablar del consumo en cifras, se va a tratar de analizar el modelo de consumo español de TiO₂ por usos finales.

Dicho modelo no difiere demasiado del correspondiente a otros países europeos y queda de la siguiente forma:
CUADRO 40

CONSUMO POR USOS FINALES DE TiO₂

Fabricación de pinturas	67,0%
Fabricación de plásticos y suelos	16,2%
Fabricación de papel	7,3%
Fabricación de gomas	1,0%
Fabricación de tintas	1,8%
Fabricación de fibras textiles	2,6%
Industria cerámica	2,5%
Otros	1,6%

100,0%

FUENTE: "Industrial Minerals"

Como puede observarse, más de la mitad del consumo se destina a la fabricación de pinturas, siguiéndole a gran distancia la de plásticos y suelos y la de papel, absorbiendo entre los tres sectores el 90% del consumo total de titanio.

3.3.4. PRECIOS Y COMERCIALIZACIÓN

El titanio no se cotiza en Bolsa y los precios que rigen en España y Europa en general, tienen su base en las cotizaciones recogidas por el Metal Bulletin, cuya evolución ya se trató en otro apartado del estudio.

En el precio influyen las características químicas y mineralúrgicas de los productos. Entre ellas tienen especial relevancia las siguientes:

- Contenido de TiO₂ en minerales y concentrados
- Existencia en ellos de óxidos de hierro
Existencia en los pigmentos de impurezas difícilmente separables, (cromo, vanadio, manganeso, óxidos de niobio,...)
- Opacidad y resistencia a la intemperie de los pigmentos
- Pureza (mínima del 99,3%) y dureza Brinell de la esponja de titanio

Todas estas variaciones obligan a que los contratos se negocien directamente entre productores y consumidores, renovándose cada año y revisándose los precios cuando los contratos son plurianuales.

En el caso específico de los concentrados y escorias de titanio, su comercio viene marcado por el hecho de que su producción en el mundo occidental está controlada, casi en una tercera parte, por la industria consumidora. Por ello, la comercialización libre está muy limitada, ya que, en general, los procesos comprenden desde la extracción hasta la elaboración del producto terminado y se desarrollan dentro de una misma empresa o grupo.

3.3.4.1. Formas de comercialización

Ya quedaron descritas las tres fases principales de consumo de productos de titanio: productos mineros, semielaborados y productos terminados. Atendiendo a esta clasificación, consideraremos dentro de cada uno los siguientes materiales comercializados:

1º) Productos mineros:

- Minerales y concentrados de ilmenita
- Minerales y concentrados de rutilo
- Minerales de anatasa

2º) Productos semielaborados:

- Rutilo sintético
- Escorias de titanio
- Tetracloruro de titanio
- Chatarra de titanio
- Oxidos de titanio

3°) Productos terminados:

- Pigmentos a base de óxidos de titanio
- Ferrotitani os y ferrosilicotitani o
- Carburo de titanio
- Titanio metal (esponja, polvo, pellets, barras, tochos y lingotes)

El envío de estos productos suele realizarse atendiendo a las siguientes modalidades y características:

<table>
<thead>
<tr>
<th>Producto</th>
<th>Producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenita y anatasa:</td>
<td>A granel (en contenedores)</td>
</tr>
<tr>
<td></td>
<td>En lotes: de 2.500 a 5.000 t los</td>
</tr>
<tr>
<td></td>
<td>concentrados y escorias procedentes de</td>
</tr>
<tr>
<td></td>
<td>Europa</td>
</tr>
<tr>
<td></td>
<td>: de 10.000 a 25.000 t los</td>
</tr>
<tr>
<td></td>
<td>procedentes de ultramar</td>
</tr>
<tr>
<td>Rutilo:</td>
<td>A granel: en sacos o contenedores</td>
</tr>
<tr>
<td></td>
<td>En lotes de 5.000 t</td>
</tr>
<tr>
<td>Oxidos de titanio:</td>
<td>A granel: en sacos o cisternas</td>
</tr>
<tr>
<td></td>
<td>En lotes: de 20 t para el transporte de</td>
</tr>
<tr>
<td></td>
<td>pigmentos en camión</td>
</tr>
<tr>
<td></td>
<td>: de 40-65 t para transporte por</td>
</tr>
<tr>
<td></td>
<td>ferrocarril</td>
</tr>
</tbody>
</table>
Titanio metal:
- A granel: en barriles (para la esponja o el polvo
- En lotes: de 500 libras para la esponja
 : de 2 t para titanio metal
 (tochos)
4. RECURSOS ESPAÑOLES
El objeto fundamental, con el que se redactan los inventarios nacionales de sustancias minerales, es conocer, aunque sea de forma aproximada, las disponibilidades españolas y la situación de vulnerabilidad del país en el mercado de la citada sustancia.

Así, en los capítulos precedentes se ha examinado brevemente la situación del titanio en el contexto mundial (capítulo 2) y, posteriormente, se ha analizado la coyuntura española (capítulo 3), describiéndose las características más destacables de unos yacimientos e indicios que, al no encontrarse en explotación, únicamente sirven para proporcionar información sobre un potencial difícil de evaluar sin una auténtica investigación minera.

Como complemento a esta descripción geológico-minera del país, se han estudiado las características de los centros transformadores de mineral de titanio, el consumo final y el mercado de este material, lo que proporciona una buena información sobre las necesidades españolas y sus posibilidades de abastecimiento.

Para completar el inventario, se considera necesario calcular, aunque sea en base a estimaciones muy teóricas, el volumen de recursos que de minerales de titanio puede existir en España y su posibilidad de explotación en función de las cambiantes condiciones del mercado (producción, consumo, tecnología y precios).

En los apartados que siguen a continuación se intenta establecer unos límites de economicidad que definan la explotabilidad de los recursos, se fija el sistema de clasificación para los mismos y, en consecuencia, se llega a un cálculo de los recursos españoles de este material.

4.1. ECONOMICIDAD

Se define la explotabilidad de un depósito mineral como una medida de rentabilidad y el beneficio que puede obtenerse con la
La propiedad que mide la explotabilidad, en función de las variaciones de los condicionantes del mercado (oferta, demanda y precios) así como de la tecnología de explotación (costes y recuperaciones), se denomina economicidad del depósito mineral.

Si, como ya se ha dicho con anterioridad, un inventario no sólo trata de medir los recursos disponibles, sino que también pretende facilitar un conocimiento de las posibilidades de abastecer la demanda, es evidente que fijar una medida de los niveles de economicidad aplicables a los distintos tipos de yacimientos de minerales de títano existentes en el país facilita el análisis de la vulnerabilidad del mercado hacia la sustancia examinada.

Esta información, al orientar sobre las posibilidades de producción de acuerdo con los cambios en las variables económicas y tecnológicas, da lugar a unos conocimientos verdaderamente útiles a la hora de desarrollar una determinada política minera, tanto a nivel estatal como de la industria privada.

4.1.1. PLANTEAMIENTO GENERAL

Para cada depósito concreto, con una tipología y una morfología ya conocidas, la ingeniería minera puede diseñar métodos de laboreo y plantas de tratamiento que se consideran óptimos para lograr la máxima recuperabilidad de los materiales contenidos en el criadero.

Este diseño, que la experiencia demuestra que permite sólo pequeñas variaciones para cada tipo de yacimiento, junto a unos volúmenes de reservas predeterminados, origina unos costes por tonelada de todo-uno arrancada y tratada, así como unas necesidades de inversión en el montaje de las instalaciones, logrando unos
materiales vendibles con un porcentaje de recuperación sobre el mineral en el depósito.

Por tanto, será la recuperación total (volumen de toneladas a mover para obtener una tonelada de vendible), la ley media de planta (ley media del material vendible) y el volumen de material a explotar anualmente, así como el número de años de duración de la actividad minera (volumen de reservas), los que, permitiendo la comparación entre ingresos y gastos, facilitarán la determinación de la economicidad del yacimiento.

Mientras que en el capítulo de ingresos hay un solo parámetro a tener en cuenta para determinar la explotabilidad de un criadero, el precio de los concentrados vendibles, cuando se habla de gastos, tres son los parámetros fundamentales:

- Ley media del todo-uno explotable, que establece el volumen de toneladas a arrancar para obtener una de material vendible.

- Ley mínima o ley de corte, definida como la ley que debería tener un mineral para que sus costes directos se igualasen a los ingresos por venta, que determina los límites del criadero y, por tanto, su tamaño.

- Volumen de reservas, que fija el tonelaje explotable anualmente y, según eso, los años de amortización de las inversiones.

Teniendo en cuenta estos factores que van a influir en la corriente de ingresos y en la de gastos, será necesario acudir a un sistema que, de acuerdo con la propia definición de economicidad, permita comparar ambas corrientes y fije la rentabilidad de la explotación.
En este sentido, el método universalmente adoptado es aquél que analiza y mide la rentabilidad de las inversiones necesarias para la puesta en marcha y explotación del yacimiento.

entre los diversos sistemas a utilizar para valorar y seleccionar inversiones, se van a utilizar dos: el criterio del Valor Actual Neto (V.A.N.) para valoración del depósito y el criterio de la Tasa Interior de Retorno (T.I.R.) para medir su rentabilidad y compararla con el coste del capital invertido en su financiación.

Al elegir estos criterios se pretende establecer una correlación entre los parámetros geológico-mineros, (ley del todo-uno, tipología el depósito y volumen de reservas) con los económicos, (precio del concentrado vendible y rentabilidad mínima de la inversión, necesaria para la puesta en marcha y explotación del yacimiento).

Junto a los parámetros a estudiar, se van a prefijar tres puntos de partida:

1) Todos los depósitos cuyas leyes sean inferiores a la ley de corte no justifican su explotación, ya que solo el coste de arrancar y tratar el mineral, aún sin pensar en los costes de la inversión, es superior al ingreso obtenido con su venta. Por tanto, tales depósitos se considerarán "subeconómicos".

2) Todos los yacimientos que teniendo un volumen mínimo de recursos, una tipología establecida y unas leyes medias determinadas, proporcionen una T.I.R. de la inversión en ellos realizada, superior a la prefijada, serán considerados económicos.

3) Todos los criaderos cuyas características sitúen a sus recursos entre los dos límites establecidos, serán considerados "marginales" y su explotabilidad dependerá en cada momento de variables coyunturales, tales como el grado de amortización
de las inversiones, costes del transporte a los centros de consumo, precio del dinero, etc...

4.1.2. EVALUACION DE LA EXPLOTABILIDAD DE LOS DEPOSITOS ESPAÑOLES DE TITANIO

De acuerdo con lo que se acaba de exponer, el criterio T.I.R. elegido para evaluar la explotabilidad de los depósitos, establece una correlación entre ingresos, gastos, inversión inicial, vida útil de criadero y leyes medias mínimas exigibles. El análisis de estos factores, permitirá establecer los límites actuales de explotabilidad de los recursos españoles de titanio.

A continuación se van a examinar cada una de las variables enumeradas, considerándolas en el contexto económico actual de España, fijando los mismos para cada tipo de depósito conocido en el país.

4.1.2.1. Inversiones

En minería, cuando no se conoce con exactitud el proyecto minero, es práctica común fijar el volumen de inversiones como una función del volumen anual de ingresos, (Blondel, 1950).

En la minería del titanio, la inversión necesaria para la puesta en marcha de nuevos yacimientos resulta difícil de establecer, ya que desde 1973 se paralizaron todos los yacimientos existentes y dejó de existir producción minera, debido tanto a los altos costes de explotación como a la baja del precio del mineral.

Sin embargo, por similitud con otras minerías de características parecidas y tras las consultas efectuadas con empresas mineras internacionales, se puede estimar que, un nuevo proyecto o la compra de una mina importante, representaría 4 veces el valor aproximado de la producción anual, siendo sólo inferior en el caso
de instalaciones que habiendo funcionado anteriormente, estuvieran amortizadas en todo o en parte.

Dado que éste no es el caso español, para el actual Inventario se va a definir que:
I: 4 veces el valor de la producción anual vendible, circunstancia que nos permite definir unos "límites" de carácter muy general.

4.1.2.2. Ingresos

Con independencia de otros ingresos atípicos, que suelen producirse en la explotación de un yacimiento: venta de subproductos o coproductos, liquidación de materiales usados, etc..., para determinar la economicidad de un depósito minera, los únicos ingresos a considerar son los obtenidos a los precios normales de mercado.

Los concentrados de titanio, tal y como se ha comentado en el apartado 2.5.6., se valoran, como ocurre con la mayoría de los minerales de aplicación industrial, esto es, los que tienen un consumo específico sin necesidad de la obtención del metal en ellos contenido, en base a un precio que el mercado establece para un material de unas características específicas. En este caso, tipo de mineral, rutilo ó ilmenita, y contenido en TiO₂ medio, existiendo una escala de premios o deducciones para los concentrados cuyo contenido medio en TiO₂ varía, por encima o por debajo, del límite establecido.

Para los cálculos de explotabilidad, será preciso por tanto, considerar el tipo de mineral y las leyes del mercado, pero también hay que considerar que los recursos a evaluar tendrán una ley "l1" y que durante el proceso de aprovechamiento, explotación y beneficio, se producirán unas pérdidas que darán lugar a un rendimiento "R1", siempre menos que la unidad. Este valor de "R1", no se conoce en la actualidad en España, pero en los países explotadores, dada la mejora de los métodos de concentración y de

- 149 -
aprovechamiento ya señalada, tiende a situarse entre el 0,8 y el 0,85.

Por tanto, para los cálculos estimativos a realizar, se puede establecer que será:

a) Ilmenita

\[V_{I} = 0,825 \cdot \frac{P_{I}}{54} \cdot l_{I} \]

donde:
- \(P_{I} \) = Precio de la Ilmenita en el mercado internacional
- \(l_{I} \) = ley en % de los recursos
- 54 = ley mínima exigida a los concentrados

Como en la actualidad, el precio entre 70 y 80 $ Australianos, dependiendo de la calidad del material, en condiciones F.O.B., y el $ Australiano oscila entre 100 y 105 Pts/$ A, para este estudio se va a tomar:

\[V_{I} = 0,825 \cdot 140 \cdot l_{I} = 115.1_{I} \text{ Pts/t} \]

b) Rutílo

Utilizando la misma técnica que con la ilmenita, será:

\[V_{R} = 0,825 \cdot \frac{P_{R}}{96} \cdot l_{R} \]

donde:
- \(P_{R} \) = Precio del rutílo, a granel, en el mercado internacional
- \(l_{R} \) = ley en % de los recursos
- 96 = ley exigida a los concentrados

Tomando, como en el caso anterior, los valores medios existentes en la actualidad que, para el precio del
rutilo oscial entre 570 y 600 $ Australianos, para este estudio se considerará:

\[V_r = 500. \text{lr Pts/t} \]

Se puede considerar que 1% de TiO$_2$ en forma de rutilo equivale a 4,35% de TiO$_2$ en forma de ilmenita. En base a esta consideración, el resto de los cálculos se efectuarán, como si los depósitos fuesen de ilmenita, por ser éste el recurso más común en España.

4.1.2.3. Gastos

El total de los gastos que es necesario efectuar a lo largo de la vida de una explotación minera, siempre puede referirse, como unidad de comparación, a las toneladas de todo-uno arrancadas. Dividiendo estas toneladas arrancadas entre el número de años de vida útil prevista para la mina, se obtiene la "producción media anual", por lo que existe la posibilidad de una periodificación anual de los gastos y se puede llegar a hablar de un "coste total por tonelada de todo-uno".

A lo largo de un año, los gastos originados serán:

\[G = x_1 \cdot l_1 \]

siendo

\[x_1 \]: Las toneladas anuales tratadas de todo uno

\[l_1 \]: El coste total de cada tonelada

Los costes totales se van a clasificar en dos grandes grupos: costes directos e indirectos.
Los costes directos constituyen el llamado "coste técnico" de explotación y tratamiento, que engloba los gastos de preparación de mina, arranque y transporte, gastos de acondicionamiento del mineral (desenlodado, trituración, etc...), gastos de concentración, almacenamiento de estériles y utilización de medios complementarios, (agua, energía,...).

Son costes proporcionales, al todo-uno extraído y si la explotación cesa los costes no se producen.

Los costes técnicos varían en función del tipo de yacimiento y del tamaño de la explotación. Ahora bien, en España, la minería del titanio ha sido siempre de pequeña escala, por lo que el tamaño del yacimiento tendrá escasa incidencia en el coste.

En cuanto al tipo de yacimiento existe la posibilidad de explotaciones a cielo abierto y en subterráneo. Sin embargo, en España debe considerarse la existencia de un tipo fundamental de minería del titanio, la minería de aluvión.

Se trata de minería a cielo abierto, donde se extrae ilmenita, mediante dragalinas, de unos terrenos pantanosos denominados "brañas", en los que la mineralización no profundiza más de 5 metros.

Para la valoración de los costes de extracción, dada la inexistencia de explotaciones en funcionamiento, habrá que acudir a los últimos datos utilizados, que son los de los explotadores gallegos en 1969 y pasados a pesetas corrientes de 1988, por lo que en la actualidad podrán determinarse unos costes de explotación situados entre las 500 y 1.200 pts/tonelada.

Por otro lado, los costes de beneficio se tomarían en función de las modernas tendencias actuales de tratamiento del mineral y podrían estimarse alrededor de 600-800 pts po tonelada de todo-uno tratada.
En definitiva, los costes técnicos oscilarían, para cada tonelada de todo-uno obtenida entre las 1.100 y 2.000 pts.

Los costes indirectos son aquellos gastos anuales que no dependen del proceso productivo y que, por tanto, pueden implantarse, según criterios subjetivos de prorrateo, a un producto ó a un centro de actividad.

En general, el criterio más aceptado es el de expresarlos como un porcentaje del valor de la tonelada vendible.

Dentro de estos costes, se integran los siguientes apartados:

. Gastos generales

. Gastos comerciales

. Gastos financieros

. Gastos de amortización

Los gastos financieros incluyen los costes del capital ajeno y el coste de oportunidad de los recursos propios.

Los gastos de amortización dependerán de la inversión realizada y de los años de vida útil del yacimiento.

En general, considerando una amortización lineal y pensando en instalaciones nuevas, los costes indirectos vienen a representar un 30% del valor de la producción.
4.1.2.4. Vida útil del yacimiento. Volumen de recursos

La inversión necesaria para la puesta en marcha y explotación de un depósito minero, requiere ser amortizada a lo largo de la vida del yacimiento.

Dada la necesidad de realizar unos cálculos de economicidad, se debe prefijar el número mínimo de años de funcionamiento del mismo y, por tanto, el volumen de reservas requerido para considerarlo económico.

De acuerdo con la experiencia aportada por otros países en la minería del titanio, se estima que una nueva explotación no debería tener una duración inferior a 20 años para que pueda resultar rentable.

4.1.2.5. Conclusiones

De acuerdo con todas las teorías anteriormente expuestas, puede decirse que en el caso de la minería española del titanio, se van a tomar como valores medios preestablecidos los parámetros estudiados, que serían los siguientes:

Inversión Inicial: 4 veces el valor de la producción vendible.

Vida útil: 20 años

Costes Indirectos: 30% del valor de la producción vendible.

T.I.R.: 10%

V.A.N.: > 0

Por consiguiente, para empezar a considerar como interesante un recurso de titanio, en la actualidad, se considera necesario
que el depósito disponga de alrededor del 25% de TiO₂ en forma de ilmenita, siendo no explotable cuando el contenido sea inferior al 14% de TiO₂. En los casos intermedios, minerales marginales, se precisaría cálculos más exactos para la toma de decisiones.

En el caso de minerales de rutilo, serían explotables con contenido del 6% de TiO₂ y subeconómicos con contenidos inferiores al 3,5% de TiO₂. Otros contenidos, deberían ser calculados cuidadosamente.

4.2. CRITERIO DE CLASIFICACION

De acuerdo con la norma establecida en la mayoría de los Inventarios de Recursos Minerales, elaborado por el IGME, se mantiene como sistema de clasificación el desarrollado en los EE.UU. por el U.S. Geologic Survey, el U.S. Bureau of Mines y la Energy Administration y Securities Exchange Commission, que se encuentra publicado en español en el anexo del Panorama Minero 1982 (IGME-1984, pgs. 125 a 129).

El esquema del mencionado sistema se adjunta a continuación y han adoptado los siguientes criterios de división horizontal y vertical:

Línea 1: La distinción entre recursos no descubiertos y recursos identificados se establece considerando a estos últimos como aquellos cuya ley, calidad y cantidad se conocen o se han estimado por pruebas geológicas específicas.

Línea 2: Dentro de la categoría de recursos no descubiertos, se consideran recursos hipotéticos aquellos que razonablemente puede esperarse que existan en distritos y áreas con gran tradición en la minería del estaño, bajo condiciones geológicas análogas; y recursos especulativos aquellos que pudieran existir en tipos de depósitos análogos a los conocidos, en un entorno geológico
ESQUEMA DE CLASIFICACION

<table>
<thead>
<tr>
<th>RECURSOS IDENTIFICADOS</th>
<th>RECURSOS NO DESCUBIERTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOSTRADOS</td>
<td>GRADE DE PROBABILIDAD</td>
</tr>
<tr>
<td>MEDIDOS</td>
<td>HIPOTETICOS</td>
</tr>
<tr>
<td></td>
<td>ESPECULATIVOS</td>
</tr>
<tr>
<td>INFERIDOS</td>
<td></td>
</tr>
</tbody>
</table>

ECONOMICOS	RESERVAS	RESERVAS INFERIDAS
	RESERVAS MARGINALES	RESERVAS MARGINALES INFERIDAS
ECONOMICOS MARGINALES		
SUB-ECONOMICOS	RECURSOS SUBECONOMICOS	RECURSOS SUBECONOMICOS INFERIDOS
	DEMOSTRADOS	
favorable, en lugares donde no se han producido descubrimientos.

Línea 3: Se entiende por recursos demostrados aquellos que se pueden calcular a partir de datos obtenidos en calicatas, sondeos y otras labores mineras.

Línea 4: Dentro de la categoría de recursos demostrados, se consideran recursos medidos aquellos para los cuales su tonelaje y ley han sido determinados a partir de labores de investigación y explotación minera.

Línea A: Establece la división entre aquella parte de los recursos cuya explotación minera es lucrativa, y aquellos otros para los cuales podría llegar a serlo si se produjeran cambios en los factores económicos y tecnológicos presentes.

Línea B: Indica el nivel mínimo, por debajo del cual, un recurso minero es inexplicable, en términos económicos, en la presente situación de mercado y tecnología.

Una vez fijado el sistema para poder llegar a calcular y clasificar los recursos españoles, se procedió a clarificar y homogeneizar los datos recopilados, procedentes de las siguientes fuentes: bibliografía, estudios y trabajos del propio TGME; información escrita y oral, de compañías investigadoras, públicas y privadas; información procedente de productores, explotadores y Secciones de Minas, datos obtenidos durante las visitas a explotaciones e instalaciones, etc.

4.3. RECURSOS

Establecidos los criterios de clasificación seguidos para la evaluación de los recursos nacionales de titanio, se obtiene como resultado las siguientes cifras totales:
RECURSOS TOTALES

<table>
<thead>
<tr>
<th>ECONOMICOS</th>
<th>DEMOSTRADOS</th>
<th>INDICADOS</th>
<th>RECURSOS IDENTIFICADOS</th>
<th>RECURSOS NO DESEUBIERTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92.000</td>
<td>55.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECONOMICOS MARGINALES</td>
<td>116.000</td>
<td>165.000</td>
<td></td>
<td>1.130.000</td>
</tr>
<tr>
<td>SUBECONOMICOS</td>
<td>252.000</td>
<td>300.000</td>
<td></td>
<td>2.035.000</td>
</tr>
</tbody>
</table>

UNIDAD: t. de mineral con el 50% de TiO₂

Las reservas españolas de mineral de titanio con un contenido del 50% de TiO₂ alcanza un valor superior a las 90.000 t. Esta cifra es insignificante comparada con las europeas y mundiales. Sin embargo es interesante señalar que las reservas europeas sólomente se concentran en unos pocos países: Noruega, Finlandia y Rusia, por lo que potencialmente sería posible que nuestros minerales llegasen a los mercados europeos y competir con el titanio indio y australiano que deben pagar fletes considerables. En la actualidad esta perspectiva no es tan clara por la enorme competencia que presenta la ilmenita noruega, que junto con la asiática y el titanio australiano abastecen a Dow-Le Petit (antiguamente Dow-Unquinesa y Dow-Chemical) y Titanio, S.A., las dos empresas que en España consumen mineral de titanio, por lo que nuestra minería se encuentra prácticamente paralizada desde 1.973.

Si los criterios empleados para la evaluación de las reservas del país, se hubiesen basado en la existencia de una minería reciente, no cabría la menor duda que éstas alcanzarían cifras muy superiores, del orden de las 600.000-800.000 t. por lo que a un
de las 600.000-800.000 t. por lo que a un ritmo de producción de 50.000 t/año sería suficiente para más de 12 años.

Entre recursos identificados y no descubiertos, España alcanza una cifra del orden de 4 M de t, cantidad que sería mayor si se hubiese tenido en cuenta los yacimientos primarios, los depósitos de rutilo y una mayor extensión de las arenas de playa que contienen elementos pesados de litoral gallego, onubense y otras áreas costeras.

Atendiendo a la distribución zonal establecida, la que cuenta con mayores cantidades de recursos es Galicia y más concretamente la provincia de La Coruña, en los aluviones del área de Monte Castelo.

RECURSOS GALICIA

<table>
<thead>
<tr>
<th>RECURSOS IDENTIFICADOS</th>
<th>RECURSOS NO DESCUBiertOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOSTRADOS</td>
<td>INFERIDOS</td>
</tr>
<tr>
<td>MEDIDOS</td>
<td>INDICADOS</td>
</tr>
<tr>
<td>ECONÓMICOS</td>
<td>80.000</td>
</tr>
<tr>
<td>ECONÓMICOS MARGINALES</td>
<td>120.000</td>
</tr>
<tr>
<td>SUBECONÓMICOS</td>
<td>200.000</td>
</tr>
</tbody>
</table>

UNIDAD: t. de mineral con el 50% de TiO₂.

Las reservas suponen casi el 87% del total nacional y los recursos totales más del 53%.
La siguiente zona en importancia por su volumen de reservas es Andalucía, principalmente concentradas en las playas del litoral de Huelva (Playa de Castilla).

RECURSOS ANDALUCÍA

<table>
<thead>
<tr>
<th></th>
<th>DEMOSTRADOS</th>
<th>INDICADOS</th>
<th>INFERIDOS</th>
<th>HIPOTÉTICOS</th>
<th>ESPECULATIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECONÓMICOS</td>
<td>12.000</td>
<td>20.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECONÓMICOS MARGINALES</td>
<td>15.000</td>
<td>30.000</td>
<td>250.000</td>
<td></td>
<td>310.000</td>
</tr>
<tr>
<td>SUBECO-NÓMICOS</td>
<td>30.000</td>
<td>60.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIDAD: t. de mineral con el 50% de TiO₂

Las reservas representan el 13% del total nacional.

En la zona Oeste, la actividad minera del titanio ha sido insignificante y sólo en los años 1957 y 1958 se registraron unas mínimas producciones en la provincia de Salamanca, por lo que únicamente tienen cierto interés los recursos no descubiertos, que pueden encontrarse en áreas aluvionares de Salamanca, Zamora y Extremadura.
RECURSOS ZONA OESTE

<table>
<thead>
<tr>
<th>RECURSOS IDENTIFICADOS</th>
<th>RECURSOS NO DESCUBIERTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOSTRADOS</td>
<td>INFERIDOS</td>
</tr>
<tr>
<td>MEDIDOS</td>
<td>INDICADOS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECONÓMICOS

ECONÓMICOS MARGINALES

<table>
<thead>
<tr>
<th>1.000</th>
<th>20.000</th>
</tr>
</thead>
</table>

SUBECONÓMICOS

<table>
<thead>
<tr>
<th>2.000</th>
<th>35.000</th>
</tr>
</thead>
</table>

UNIDAD: t. de mineral con el 50% de TiO₂

En las restantes provincias españolas los recursos de titanio tienen aún menor interés. No se han estimado recursos demostrados y las únicas labores realizadas conocidas, proceden de concesiones en aluviones de Sn-Ti dentro de la provincia de Madrid.

RECURSOS RESTO DE ESPAÑA

<table>
<thead>
<tr>
<th>RECURSOS IDENTIFICADOS</th>
<th>RECURSOS NO DESCUBIERTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOSTRADOS</td>
<td>INFERIDOS</td>
</tr>
<tr>
<td>MEDIDOS</td>
<td>INDICADOS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECONÓMICOS

ECONÓMICOS MARGINALES

<table>
<thead>
<tr>
<th>5.000</th>
</tr>
</thead>
</table>

SUBECONÓMICOS

<table>
<thead>
<tr>
<th>15.000</th>
</tr>
</thead>
</table>

UNIDAD: t. de mineral con el 50% de TiO₂

- 161 -
5. CONCLUSIONES
El titanio tiene un conjunto de características físicas muy interesantes entre las que destacan su elevada resistencia mecánica, su baja densidad, su resistencia a la corrosión y su elevada resistividad eléctrica. Estas propiedades condicionan la gran mayoría de sus aplicaciones industriales, las cuales se efectúan de tres formas, como componente de aleación, como metal puro y en forma de producto químico (dióxido de titanio) donde alcanza su máximo consumo como pigmento blanco.

Las reservas mundiales (recursos económicos demostrados) de este metal son superiores a 184 Mt de titanio contenido en los minerales. El 75% procede de ilmenita y el resto de depósitos de rutilo y anatasa (los de este último mineral localizados en Brasil). Por países, el 18% de la ilmenita se encuentra en la República de África del Sur, mientras que el 72% del rutilo y la anatasa se ubican en Brasil.

Por lo que respecta a la producción, establecida entre 350.000 y 400.000 t/año de titanio metal contenido en los concentrados vendibles, se obtiene fundamentalmente en Australia, cerca del 60% del total mundial.

La comparación entre el volumen de recursos y la producción minera permite estimar que el abastecimiento, a nivel mundial, se encuentra asegurado por un período superior a los 20 años.

La minería española de titanio es relativamente moderna, comenzando en 1935. Este hecho coincide con lo ocurrido a nivel mundial, ya que hasta 1910 no se obtuvo por primera vez, a nivel de laboratorio, el metal puro y fue la proximidad de la II Guerra Mundial quién aceleró el proceso de utilización de aleaciones.

Dentro del país la producción ha sido pequeña obteniéndose en los años de mayor actividad, entre 1956 y 1973, alrededor de 500.000 t de concentrados vendibles, con un contenido medio de 225,000 t de TiO₂, equivalentes a 135.000 t de titanio metal. Las
leyes eran muy bajas por lo que los rendimientos eran escasos lo que motivó que en 1973 cesase toda la actividad minera en relación con estos productos.

Los yacimientos fundamentalmente explotados eran de tipo placer, tanto aluvionar como de playa, así como algunas mineralizaciones asociadas a complejos básicos. La mayor tradición minera se ubica en la provincia de La Coruña, así como en algunas zonas de Huelva. Dado el tipo de depósitos, las labores eran predominantemente a cielo abierto.

Aunque existen indicios en diversas zonas del país: Galicia, Oeste, Andalucía, etc, los recursos económicos demostrados se han estimado ligeramente superiores a 90.000 t de mineral con un contenido medio superior al 50% de TiO₂, ubicados fundamentalmente en Galicia (80.000 t) y en Andalucía (12.000 t). Dada la abundancia de indicios y la antigüedad de la minería que ha servido como soporte para el establecimiento de estos recursos, se estima que de poder disponer de datos más recientes, podría haberse llegado a estimar un volumen entre 600.000 y 800.000 t de mineral pero no se puede establecer que todas serían explotables por superar el 50% de TiO₂ contenido.

Existen en el país dos plantas de elaboración y transformación de minerales. Tioxide Española, S.A. en Huelva y Dow Chemical Española, S.A. en Bilbao, que obtienen unas 80.000 t/año de dióxido de titanio partiendo del tratamiento de minerales de importación.

Como consecuencia de la no existencia de producción minera, el comercio exterior de materiales de titanio, deficitario en minerales, sufre variaciones a lo largo del proceso productivo, siendo excedentario en dióxidos, deficitario en titanio metal y prácticamente de saldo nulo en ferroaleaciones.
En resumen, las cifras de consumo nacional son difíciles de calcular, sin embargo, en base a los saldos de comercio exterior, se ha estimado que, el consumo de minerales superó las 100.000 t. (107.000 t en 1987) el de óxido puede ser de 30.000 t/año y el de titanio metal de unas 1.800 t/año.

Las perspectivas de futuro del sector podrían ser bastante parecidas a las actuales, continuando la dependencia en minerales y elaborados y la exportación de pigmentos y óxidos.
BIBLIOGRAFÍA
BARTLE W.W.

CLARKE G.

COLLINGWOOD J.A.

COOPE BRIAN

COURT, K.

DARBY R.J.

DAYTON S.

EDGARD L.R.

FEIQUE

- "La industria química en España". 1980.

FERGUSON, F.A.

FORCE, E.R.

FORCE, E. AND GARNAR, T.

FULLER H.R.

GADSEN P.

GARNARD E.T. and DUPONT NEMOURS

GEOLOGICAL SURVEY

GRIFFITHS, J.

- "Minerals in welding fluxes-the whys and wherefores".

GUMIEL P.

- "Essai sur la classification typologique des principaux gisements de Sn-W d'Extremadure (Espagne)". Cronique de la Recherche Minere. 1981.

HARBEN, P.

- "Titanium minerals in Brazil-progress and potential"
IGME

- "Catastro minero de La Coruña".
- "Catastro minero de Orense".
- "Catastro minero de Pontevedra".

- 1959 - nº 10.075.- Ensayo de molienda sobre una muestra de mineral de rutilo de Nueva Montaña Quijano S.A. (Santander).

IGME (Continuación)

- 1972 - n° 10.308.- Exploración magnética de la provincia de Cáceres. Area de Navalmental de la Mata (Cáceres).

- 1972 - n° 12.016.- Mapa metalogenético de España E. 1/1.500.000. Mapa previsor de mineralizaciones de titanio (España).

- 1973 - nº 10.173.- Estudio geoquímico de áreas con posibilidades mineras. Estudio de la red de drenaje en la zona del río Besós, Riera de la Pineda (Barcelona-Gerona).

- 1973 - nº 10.182.- Estudio geoquímico de áreas con posibilidades mineras. Estudio de la red de drenaje del río Llobregat (Gerona).

IGME (Continuación)

- 1973 - nº 10.561.- Estudio sobre el estado actual y tendencias futuras de mercado y tecnología de algunas sustancias minerales destinado a la elaboración de planes de actuación sobre estas sustancias. Tomo V. Titanio (España).

- 1973 - nº 10.183.- Estudio geoquímico de áreas con posibilidades mineras. Estudio de la red de drenaje en la zona de Port-Bou-Rosas (Gerona).

- 1975 - nº 10.009.- Programa sectorial de investigación de minerales de Cu, Ni, Ti, fase previa de investigación en la zona de Ortigueira (La Coruña).

- 1977 - nº 10.583.- Proyecto de investigación minera en Carball, Monte Castelo, para Cu, Ni, Cr, Ti y Asbestos (La Coruña).

IGME (Continuación)

- 1979 - n° 10.611.- Ordenación y valoración geológico-minera de Cataluña para el establecimiento de una sistemática de investigación minera integral.

- 1979 - n° 10.619.- Revisión del conocimiento metalogenético de la zona costera en las provincias de Tarragona y Barcelona.

- 1980 - n° 00.616.- Síntesis de las investigaciones geológico-míneras realizadas por el IGME en Extremadura.

- 1980 - n° 00.645.- Síntesis de las investigaciones geológico-míneras, realizadas por el IGME en León, Zamora y Salamanca.

INDUSTRIAL MINERALS. METAL BULLETIN, PLC.

- Ago. 1982, n° 179. "Tióxido buy ERT Stake in titanium".

- Dic. 1982, n° 183. "Rutilo operation takeover. Sierra Leona".

INDUSTRIAL MINERALS. METAL BULLETIN, PLC. (Continuación)

- Mar. 1986, n° 222. "Australia, TiO₂ Corp Feasibility study".

- May. 1986, n° 224. "Madagascar, QIT to develop Madagascar ilmenita".

- Jul. 1986, n° 226. "SCM in potential TiO₂ venture"

- Ago. 1986, n° 267. "Taiwan, Du Pont's TiO₂ plant hits snag".

"Turkey's minerals"

- Sep. 1986, n° 268. "Australia, SCM converts to chloride TiO₂".

"Australia, TiO₂ Corp. minsands study progress."

"TiO₂ prices set to rise".

- Nov. 1986, n° 270. "Australia, Cooljarloo neary mineral reserves to 12 m. tonnes".

"Arabia Saudita. Kerr-Mc Gee TiO₂ pigment venture"

- Feb. 1987, n° 273. "USA, California ilmenite".
INDUSTRIAL MINERALS. METAL BULLETIN, PLC. (Continuación)

- Abr. 1987, nº 275. "Taiwan Du Pont TiO₂ project moved".

INSTITUTE OF GEOLOGICAL SCIENCES

- "World Mineral Statistics"

INVESTIGACION Y EXPLOTACION DE LOS RECURSOS MINEROS

- "Consejo Económico Sindical del Noroeste".

JAMES R.J.

JÖRGENS H.

LANE WHITE R.

LYND E.L.

LYND E.L. (Continuación)

MCCULLOCH R.

MSEGUER PARDO, J.

- "Titanio. Metalogenia, aplicaciones y yacimientos españoles". Boletín Oficial de Minas y Metalúrgia. 1930

METAL BULLETIN

- "World Steel and Metal News (Revista bisemanal). 1970-1978

METAL STATISTICS

MINING MAGAZINE

MINISTERIO DE ECONOMIA. DIRECCION GENERAL DE ADUANAS

- "Estadística de Comercio Exterior de España".

MINISTERIO DE INDUSTRIA. DIRECCION GENERAL DE MINAS

- "Estadística Minera de España".

MINKLER W.

- "Titanium. Demand may remain slow in 81 but aircraft use should provide long-term strength. EMJ. Mc Graw-Hill. Marzo 1981.

MINKLER W. (Continuación)

N. M. A. B.

- "Direct reduction processes for the production of titanium metal".

PARK and MACDIARMED

PINEDO VARA L.

SCHNEIDER, E.A.

THE INSTITUTION OF MINING AND METALLURGIE

TIMET, ASSOCIATION INC.

TITAN

UNTERSUCHUNGEN UBER

- "Angebot und Nachfrage mineralischer Rohstoffe". Vol. XIII.

U.S. BUREAU OF MINES

- "Mineral commodity summaries". 1975-1987

- "Commodity data summaries" 1960-1974

- "Mineral facts and problems". 1985

- "Metal statistics" (mensual)
VAZQUEZ GUZMAN, F.

- "Depósitos minerales de España". IGME 1983.

WORLD ATLAS OF GEOLOGY AND MINERAL DEPOSITS

YAMADA SHIGEKY